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The present generation of measurements of the anomalous magnetic moment of the
muon (aµ) have reached sub part per million (ppm) precision, a level at which they are
sensitive to electromagnetic and hadronic interactions, and for the first time, to the elec-
troweak interactions. Comparing the experimental results with Standard Model evaluations
provides stringent constraints on physics beyond our current model. The determination of
aµ at Experiment 821 at Brookhaven National Laboratory requires simultaneous measure-
ments of the muon spin precession frequency and the magnetic field of the muon storage
ring. This analysis, one of several to measure the spin precession frequency, uses a ratio
of phase-shifted decay electron time spectra to unshifted time spectra. Combined with an
independent measurement of the magnetic field, the anomalous magnetic moment of the
negative muon has now been determined to a precision of 0.7 parts per million (ppm):
aµ− = 11659214(8)(3) × 10−10. This value is in good agreement with measurements of
the anomalous magnetic moment of the positive muon: aµ+ = 11659204(7)(5) × 10−10 (0.7
ppm). We discuss the principle of and the analysis techniques used in this experiment, and
compare the final results with the theoretical prediction for aµ.
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Chapter 1

Introduction

Measurements of anomalous magnetic moments have provided great insights within the field
of subatomic particle physics. The measurement of the proton magnetic moment was one of
the first indications of substructure in the particle, a major piece of the puzzle that led to the
development of quantum chromodynamics (QCD). The ultra-precise determination of the
anomalous magnetic moment of the electron provides the best determination of the quantum
electrodynamics (QED) coupling constant, α, at q2 = 0. The present measurements of
the anomalous magnetic moment of the muon provide a unique and stringent test of the
electroweak theory in the Standard Model of particle physics, and are also a sensitive test
of physics beyond the Standard Model. The anomalous magnetic moment of the positive
muon has already been measured to about 0.7 parts per million (ppm) at the Alternating
Gradient Synchrotron at the Brookhaven National Laboratory, the results of which have
provoked much discussion within the physics community and a re-evaluation of the theory.
This dissertation will discuss both the principle of and the analysis techniques used in the
measurement of the anomalous magnetic moment of the negative muon to about 0.7 ppm,
and will compare the final results with the theory.

1.1 Background on the Anomalous Magnetic Moment

1.1.1 Some Definitions

In classical quantum mechanics, the gyromagnetic ratio, gs, of a spin 1
2 particle is given by1

~µs = gs
e

2m
~S (1.1)

where µs and ~S are the magnetic dipole moment and the spin vector of the particle respec-
tively.

The first observation of quantized atomic magnetic moments was made by Stern and
Gerlach in the 1922[1] experiment where a flat beam of silver atoms was passed through
a non-homogeneous magnetic field and the beam was observed to split into two. Classical
theory predicts a continuous spread of the beam. The observation of the beam splitting
was first explained by Goudsmit and Uhlenbeck [2] as a result of electron spin quantization.

1Unless otherwise noted, we use natural units where c=h̄=1.
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Similar experiments were later conducted using hydrogen and other atoms (eg: [3]). Dirac’s
quantization of Einstein’s relativistic energy equation [4] in 1928 showed that quantized
spin arises from Lorentz invariance and predicted that for a spin 1/2 point particle such as
the electron, gs = 2.

However, due to various effects, gs is never equal to 2 for any spin 1/2 particle. Es-
termann and Stern [5] were the first to find that the proton’s gyromagnetic ratio is very
different from two (gp ' 5.59). This difference was one of the first indications that the
proton is not a point particle but has substructure (quarks and gluons).

Electrons and muons are considered elementary point particles, since no signs of sub-
structure at the level of 10−18 cm for these particles has been found. However, because of
quantum fluctuations of the vacuum, their gyromagnetic ratios also differ from two. The
sum of the quantum contributions to the magnetic moment is expressed simply as

a ≡ g − 2

2
(1.2)

which is known as the anomalous magnetic moment.

In the Standard Model of particle physics, the theoretical values of the anomalous mag-
netic moment of the electron and muon are traditionally written as

aSM
l = aQED

l + aWeak
l + aHad

l (1.3)

where l is the lepton of interest and the contributions to the anomaly are grouped according
to the fundamental interactions involved: quantum electrodynamical interactions (QED),
weak interactions (Weak), and hadronic, or quantum chromodynamical, interactions (Had).

1.1.2 The Electron g − 2

The development of the theory of QED had very close ties to the anomalous magnetic
moment of the electron. In 1948 Kusch and Foley [6] measured the gyromagnetic ratio of
the electron to be ge = 2(1.00119 ± 0.00005). This measurement, along with the Lamb
Shift, motivated the first calculation of ae by Schwinger in 1947 [7]. Schwinger calculated
the first-order QED contribution to ae, shown in Fig. 1.1(b). At the time, QED was in the
early stages of its development, beset by divergence difficulties. Schwinger’s tour-de-force
calculation of ae = α/2π ' 0.00118, where α ' 1/137 is the fine structure constant, agreed
wonderfully with the experimentally determined value from Kusch and Foley.

QED has since been fully developed, and one may, in principle, calculate the QED
contribution to ae to any desired precision. However, due to computational limits (that is,
the need to calculate an exponentially increasing number of Feynman diagrams from one
order of α/π to the next), the theoretical calculation of aQED

e has been made to fourth order
in α/π[8] (see Figs. 1.1 and 1.2 for examples of the interactions involved):

aSM
e = C1

α

π
+ C2

(

α

π

)2

+ C3

(

α

π

)3

+ C4

(

α

π

)4

+ 1.70(3) × 10−12 (1.4)

where the first four terms are QED interactions and the very last term is the contribution
from weak and hadronic interactions. The first three QED terms are known analytically [9]
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~B

l l̄

(a) g=2 exactly

~B

l l̄

(b) First order QED correction
(=α/2π)

Figure 1.1: QED Feynman diagrams. l represents an incoming lepton (either electron or
muon).

where

C1 =
1

2
, C2 = −0.32847844400, C3 = 1.181234017 (1.5)

and the fourth term has been computed to be [10]

C4 = 1.7502(384) (1.6)

Now, ae is one of the most precisely measured physical constants, with a relative uncer-
tainty of 4 parts per billion (ppb)[11]:

aexp
e− = 1159652188.4(4.3) × 10−12 (1.7)

and
aexp

e+ = 1159652187.9(4.3) × 10−12 (1.8)

Using the experimental value of ae, and assuming all experimental and theoretical errors
are under control, the best determination of the fine structure constant at q2 = 0[10] is:

α−1
ae

= 137.03599875(52) (1.9)

The next-best determination of the fine structure constant α comes from the measurement
of the quantum Hall effect[12]

α−1
QHE = 137.03600300(270) (1.10)

over five times less accurate than αae .

Since the weak and hadronic interaction contributions to ae are smaller than the exper-
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order QED correction,
O((α/π)4))

Figure 1.2: Higher order QED Feynman diagrams. l represents an incoming lepton (either
electron or muon).

imental error, ae is not very useful for probing higher energy scale physics. On the other
hand, both the hadronic and weak interaction contributions to al are proportional to m2

l ,
where ml is the mass of the lepton. Since the muon is approximately 200 times more mas-
sive than the electron, aWeak

µ and aHad
µ are (mµ/me)

2 ∼ 4 × 104 times larger for aµ than
for ae. Therefore the muon anomalous magnetic moment is much more sensitive to larger
energy scale physics that that of the electron, and it is for this reason that aµ is such an
interesting property to measure.

1.2 QED Contributions to aµ

The QED contribution to aµ has been calculated either analytically or by numerical methods
through 5 loops [10]

aQED
µ = C1

α

π
+ C2

(

α

π

)2

+ C3

(

α

π

)3

+ C4

(

α

π

)4

+ C5

(

α

π

)5

(1.11)

where again,

C1 =
1

2
(1.12)

and

C2 = 0.765857399(45), C3 = 24.0505095(23),

C4 = 125.08(41), C5 = 930(170) (1.13)
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Figure 1.3: Weak interaction loops in al.

The large increase in the coefficients of the expansion arises from the electron loop (ln(mµ/me) '
5.3) terms and the very large contribution of the light-by-light electron loop in C3 (nearly
88% of the entire value of C3) [8].

Using α−1(ae) (Eq. 1.9), the theoretical value of aQED
µ is found to be [10]

aQED
µ = 116584703.5(2.8) × 10−11 (1.14)

which gives a relative uncertainty at the level of 24 ppb.

1.3 Weak Contributions to aµ

The smallest contribution to aµ arises from weak interaction loops, and only a calculation
to second order has been necessary to test the theory at the present experimental limits
(existing or proposed). Examples of some of the weak interaction Feynman diagrams are
shown in Fig. 1.3. The first order correction is [13, 14]

aWeak
µ (1) =

5Gµm
2
µ

24
√

2π2

[

1 +
(1 − 4 sin2 θw)2

5
+ O

(

mµ

M

)2
]

(1.15)

where Gµ is the Fermi constant, sin2 θw = 1 − m2
W /m2

Z is the weak mixing angle, and
M = mW or mHiggs. Plugging in the numbers, one finds [15]

aWeak
µ (1) ' 195 × 10−11 (1.16)

The presence of ln(m2
Z/m

2
µ) ' 13.5 terms in the second order electroweak correction

results in a relatively large (with respect to the first order) contribution to aµ [16]. The full
two-loop calculation, which includes low-energy hadronic electroweak loops and assumes
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ē
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Figure 1.4: Feynman diagram for the first order hadronic vacuum polarization contribution
to the magnetic moment. Splitting diagram 1.4(a) in “half” and replacing µ with e, one
can relate e+e− → hadrons via the dispersion relation in Eq. 1.21

mHiggs ' 150 GeV, gives [15]

aWeak
µ (2) = −41(3) × 10−11 (1.17)

where the error arises from uncertainties in the hadronic electroweak loop, the Higgs boson
mass, and higher-order uncertainties [15].

1.4 Hadronic Contributions to aµ

Although the hadronic loops are the second largest contributor to aµ, they are by far the
largest contributor to the theoretical uncertainty of aµ. As will be explained, the evaluation
of the first-order hadronic contribution, aHad

µ (1), relies on experimental data. Therefore the

uncertainty, δaHad
µ (1) is limited by the experimental uncertainties (statistical and system-

atic). Furthermore, calculations of the higher-order hadronic light-by-light contribution are
model-dependent and are therefore only estimates with rather large uncertainties (50% of
the estimated value).

1.4.1 First order vacuum polarization contribution

The first order hadronic contribution to the anomaly, aHad
µ (1), results from vacuum polar-

ization, as illustrated in Fig. 1.4(a). At q2 = 0 the hadronic terms cannot be calculated from
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first principles in QCD2. We therefore use another approach to evaluate the contribution.

Since the hadronic vacuum-polarization tensor, or hadronic spectral function, ΠH(s), is
analytic, we may write the dispersion relation [17]

aHad
µ (1) =

1

π

∫ ∞

0

ds

s
K(s) ImΠH(s) (1.18)

where ImΠH(s) is the imaginary part of the hadronic spectral function and

K(s) =

(

α

π

)∫ 1

0
dz

z2(1 − z)

z2 + s
m2

µ
(1 − z)

(1.19)

is a kinematic factor. The optical theorem, which originates from the unitarity of the
scattering matrix, relates the imaginary part of the forward elastic scattering amplitude of
an interaction to the total cross-section:

σ0(e+e− → hadrons)(s) =
4πα(s)

s
ImΠH(s) (1.20)

In practice, the Born cross section σ0(e+e− → hadrons)(s) may not be measured directly.
Rather, the total cross section, σ(e+e− → hadrons)(s) is determined experimentally and
must be corrected for initial state radiation. One wishes to use the Born cross section in the
first-order calculation of aHad

µ in order to avoid double-counting some of the higher-order
contributions.

Inserting Eq. 1.20 into Eq. 1.18 we find

aHad
µ (1) =

1

4απ2

∫ ∞

4m2
π

dsK(s)σ0(e+e− → hadrons)(s) (1.21)

For s ≥ 4m2
µ, K(s) may be parameterized as [18]

K(s) = x2

(

1 − x2

2

)

+ (1 + x)2
(

1 +
1

x2

)

[

ln(1 + x) − x+
x2

2

]

+

1 + x

1 − x
x2 lnx (1.22)

and

x =
1 −

√

(1 − 4m2
µ/s)

1 +
√

(1 − 4m2
µ/s)

(1.23)

Fig. 1.4(b) illustrates the basic concept of this approach: the vacuum polarization in
Fig. 1.4(a) is “split” in half (inside the circle) by the dispersion relation, and the virtual
hadronic states are related to real hadronic final states of the e+e− interaction.

Since the leading-order behavior ofK(s) goes as 1/s, the low-energy region of σ0(e+e− →
hadrons)(s) is weighted more heavily than higher energies. Also, the low-energy region of
σ0(e+e− → hadrons)(s) is dominated by the ρ and ω resonances. Therefore, nearly 92% of

2Thom Blum has recently begun work on a lattice-based calculation.
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ē
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π+

(a)

τ−
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ν
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Figure 1.5: Via the CVC hypothesis, τ → hadrons may be related to σ(e+e− → hadrons).

the value of Eq. 1.21 comes from the energy region 2mπ <
√
s < 1.8 GeV.

Many experiments around the world have determined the hadronic cross sections at
various energies. Below 1.4 GeV, the CMD-2 experiment at Novosibirsk currently offers the
most precise data for e+e− → hadrons, where the pion form factor has been measured with
a systematic of 0.6%. Therefore the data from CMD-2 dominate the measured low-energy
spectrum (see, for example, Fig. 1.6). In order to obtain the bare cross sections from the
data, corrections must be made for initial and final state radiation, electron-vertex loop
contributions and vacuum polarization effects in the photon propagator[19]. Some of these
corrections are quite sizeable, and have a large impact on the final determination of aHad

µ .
In fact, for CMD-2 the dominant contribution of the systematic uncertainty comes from
the uncertainty of the radiative corrections, at 0.4%. All other uncertainties, from event
separation, fiducial volume corrections, detection efficiency corrections, pion loss corrections
and beam energy determination are 0.2% or less.

Since the high hadron multiplicity in the energy region above 2.0 GeV makes the mea-
surement of the exclusive cross sections impractical, experiments done in this energy region
measure the inclusive cross section σ(e+e− → hadrons)(s), and aHad

µ (1) is rewritten as

aHad
µ (1) =

α2(0)

3π2

∫ ∞

4m2
π

ds
K(s)R(s)

s
(1.24)

where

R(s) =
σ(e+e− → hadrons)(s)

σ(e+e− → µ+µ−)(s)
(1.25)

In the energy region between 2 and 5 GeV, measurements of R (for example by such
collaborations as BES in Beijing) are used to calculate aHad

µ (1). Above 5 GeV, perturbative
QCD calculations are used.

As pointed out in [20], in the low-energy region, one may also use τ -decay data to
determine precisely the pionic cross sections using the conserved vector current (CVC)
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hypothesis. The CVC hypothesis is based on the idea that the weak coupling to the pion is
related to the photon coupling by replacing e (in the QED vertex) by

√
2g cos θc [21], where

(

g

MW

)2

=
Gµ√

2
(1.26)

and θc is the Cabbibo angle. If one assumes isospin symmetry, then the CVC hypothesis may
be used to relate the two-pion production process e+e− → π+π− to the decay τ− → ντπ

−π0

(shown in Fig. 1.5(b)) as well as the four-pion production process (eg: τ− → ντ2π
−π+π0)

by the relationships [21, 22]

σI=1(e+e− → π+π−) =
4πα2

s
vπ−π0 (1.27)

σI=1(e+e− → π+π− + π+π−) =
8πα2

s
vπ−3π0 (1.28)

σI=1(e+e− → π+π−2π0) =
4πα2

s
[v2π−π+π0 − vπ−3π0 ] (1.29)

vV (s) is the τ spectral function for a given vector hadronic state V , defined by

vV (s) ≡ m2
τ

6|Vud|2SEW

B(τ− → ντV
−)

B(τ− → ντe−ν̄e)

1

NV

dNV

ds

[

(

1 − s

m2
τ

)2 (

1 +
2s

m2
τ

)

]−1

(1.30)

where the normalized invariant mass-squared distribution (1/NV )dNV /ds for a given hadronic
mass

√
s is divided by the kinematic factor on the right [22] and the branching ratio of τ

decays to hadronic state V is normalized to the branching ratio of the electron channel [22].

Since isospin is not an exact symmetry, the data must be corrected for electromagnetic
effects and mass differences between the up and down quarks. SEW accounts for electroweak
radiative corrections [19], |Vud|2 = 0.9748 ± 0.0010 denotes the CKM weak mixing matrix
element [19]. Some of these corrections are also fairly large, at the level of a few percent.
Therefore, as with the e+e− data, the determination of the corrections are very important
when calculating aHad

µ .

The value of aHad
µ (1) has been determined by Davier, et. al. [19, 23] using both e+e−

and τ data by tabulating and subsequently integrating all data currently available. Fig. 1.6
shows the hadronic cross section as a function of center-of-mass energy squared, up to
approximately 2.2 GeV2, where both the e+e− and τ data are plotted on a log scale. The
importance of the energy region below s < 1.8 GeV is evident from this plot, which shows
the ρ resonance near (770 MeV)2.

Although the e+e− and τ decay data in Fig. 1.6 appear to agree well, the calculated
values of aHad

µ (1) actually differ by about 1.8 σ:

aHad
µ (1, e+e−−based) = 696.3 ± 6.2 ± 3.6 × 10−10 (1.31)
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Davier, et. al.[23].



11

and
aHad

µ (1, τ−based) = 711.0 ± 5.0 ± 0.8 ± 2.8 × 10−10 (1.32)

where the first uncertainty is experimental, the second uncertainty is from radiative correc-
tions, and in the case of the τ -based analysis, the third uncertainty arises from the applied
isospin breaking corrections. Since the difference between the e+e− and τ -based calculations
of aµ is ∼ 1.2 ppm of the total value of aSM

µ , the interpretation of the experimental result

relies heavily on which theoretical value of aSM
µ one chooses. For example, the difference

between the experimental value of aµ (based on the 2000 data analysis) is at the 1.9 σ-level
using the e+e− data, whereas it is only at the 0.7 σ-level using the τ decay data.

Davier and colleagues have pointed out that the difference between the two results arises
primarily from a difference at the level of 10% near the ρ region[19, 23], as shown in Fig. 1.7.
Ghozzi and Jegerlehner have pointed out that mass and width differences between the ρ0 and
ρ± could very well be the cause of the difference between e+e− and τ decay[24]. However,
Davier argues that even assuming a larger mass difference of 2.3 ± 0.8 MeV, which seem
to be favored by the data, there is still a discrepancy in the normalization of the spectral
functions of 3.3% [25, 26]. In fact, this even makes the discrepancy between the e+e− and
τ worse, raising the value of aHad

µ (1, τ−based) by 5.4× 10−10. Obviously, until this issue is
resolved, interpretation of the experimental value aexp

µ remains problematic.

1.4.2 Higher order hadronic contributions

The higher order hadronic vacuum polarization terms may also be related to the experi-
mental data used in calculating the first order hadronic term. The most recent calculations
were made by Krause [27] and Alemany, Davier and Hocker [20], in which they found

aHad
µ (h.o.) = −10.1(0.6) × 10−10 (1.33)

However, there is another kind of hadronic contribution involving four photons coupled
to an intermediate hadronic state, shown in Fig. 1.8(a), which cannot be directly related to
any experimental data. These processes are referred to as hadronic light-by-light (HLBL)
scattering. HLBL is dominated by the one-particle reducible pion-exchange pieces of the
rank-four hadronic vacuum polarization tensor Πµνλρ(q1, q2, q3) [28]. The pionic exchange,
illustrated in Fig. 1.8(b), involves the double off-shell pion-photon-photon transition form
factor Fπ0γ∗γ∗(q21, q

2
2). Since this quantity cannot be described by current data, we must

rely on low-energy hadronic models to calculate the HLBL contribution to aµ.

Since the first calculation of HLBL in 1986 by Kinoshita, et. al. [29], the sign of the
contribution has changed twice, from positive to negative and back to positive. Remarkably,
the change from positive to negative was confirmed by three independent analyses [30, 31, 32]
(one of which was a change after finding a mistake in [29]), and aHad

µ (HLBL) was found to
be ∼ −8(2) × 10−10.

However, spurred by the measurement of aµ from data collected in 1999 and by the fact
that previous calculations of the HLBL term employed low-energy QCD models that do
not reproduce the correct short-distance QCD properties (but did predict reasonable values
of aHad

µ (1)), Knecht and Nyeffeler recalculated the HLBL term using a large-Nc model for

low-energy QCD, and found a value for aHad
µ (HLBL) that agreed in magnitude but had
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Figure 1.8: Hadronic light-by-light (HLBL) contribution.

a different sign. After much work by all parties, Hayakawa and Kinoshita indeed found
a sign error [33, 34] in the treatment of the tensor εµ1µ2µ3µ4

which affected primarily the
pseudoscalar meson pole contribution to aµ. Neither the charged pion-loop contribution nor
the quark-loop contributions were affected by the tensor. Similarly, Bijnens, et. al. found
a sign mistake in the overall normalization factor of the numerically integrated pion pole
contribution[35].

Although there is now general agreement3 on both the sign and magnitude of aHad
µ (HLBL)

of ∼ 8×10−10, there is some discrepancy among the uncertainties quoted by [28] (4×10−10),
[33] (1.54 × 10−10) and [35] (3.2 × 10−10). We therefore use the conservative larger uncer-
tainty, and aHad

µ (HLBL) = 8(4) × 10−10. Obviously, since all calculations of aHad
µ (HLBL)

are model dependent, this contribution to the muon anomalous magnetic moment poses the
largest problem for any theoretical calculation of aSM

µ . Whereas the uncertainty on aHad
µ (1)

will eventually be pushed below the level of uncertainty on aHad
µ (HLBL) as more and better

data are obtained, the uncertainty on aHad
µ (HLBL) is unlikely to be reduced in the near

future, barring a breakthrough in lattice or other QCD calculations.

Adding all hadronic contributions together, we find

aHad
µ (e+e−−based) = 694.2(8.3) × 10−10 (1.34)

and
aHad

µ (τ−based) = 708.9(7.1) × 10−10 (1.35)

and adding all known contributions to aSM
µ (aQED

µ , aWeak
µ and aHad

µ ) together we find (adding

3An exception is Melnikov and Vainshtein [36] who argue for a ∼ 50% increase in the central value of
the HLBL term due to constraints on the π0-pole contribution which were ignored by previous analyses
[28, 33, 35].
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the errors in quadruature)

aSM
µ (e+e−−based) = 11659179.7(8.3) × 10−10 (1.36)

and
aSM

µ (τ−based) = 11659194.4(7.1) × 10−10 (1.37)

1.5 Sensitivity of aµ to Physics Beyond the Standard Model

In 1956, it was pointed out by Berestetskii and colleagues [37] that an accurate measurement
of aµ would test QED at much higher q2 than the current measurements of ae provided at
the time. In 1957 Schwinger suggested that a measurement of aµ would test for the existence
of new fields that couple to the muon which could have explained the µ− e mass difference
[38]. Therefore, even before the Standard Model of particle physics was developed, it
was recognized that precision measurements of aµ could provide much insight into as-yet
undiscovered physics.

The development and consequent precision tests of the Standard Model since the 1970’s
is one of the greatest accomplishments in the field of particle physics. However, we know that
the model is incomplete, for it fails to explain some very fundamental questions, such as the
origin of mass, the hierarchy problem4, baryogenesis, and the role of gravity, just to name a
few. For quite some time now, extensions to the Standard Model have been sought to resolve
several of these fundamental issues, many of which have direct implications on the value of
aµ. Examples of such extensions are supersymmetry (SUSY), muon substructure and extra
dimensions. A difference between aexp

µ and aSM
µ therefore constrains the parameters of these

theoretical extension to the Standard Model.
In general, the effects of any new physics on aµ are proportional to (mµ/Λ)2, where Λ

is the energy scale of the new physics. For example, the current measurements of aµ may
be particularly sensitive to SUSY. Assuming large value of tanβ (in the range 4-40) and
assuming similar masses for the two lightest supersymmetric partners (the chargino and the
sneutrino), Czarnecki and Marciano find[8]

aSUSY
µ ' 130 × 10−11

(

100 GeV

M

)2

tanβ (1.38)

where M is the mass scale of the SUSY particles5. Therefore, in this scenario, SUSY masses
in the range of hundreds of GeV to about 1 TeV would contribute at a discernible level in
the current measurements of aµ, which are sensitive at the 10−10 level.

4The hierarchy problem of the Standard Model refers to the unnatural size (1019 orders of magnitude)
separation between the electroweak symmetry breaking scale and the Plank scale.

5tan β is the ratio of the vacuum expectation values (VEV) of the two Higgs doublets in the Minimal
Supersymmetric Model.
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Chapter 2

Experiment E821 at BNL

2.1 Previous Measurements of aµ

All previous and current measurements of the anomalous magnetic moment of the muon
are based on two basic principles: muons born from pion decay in flight are polarized, and
muons themselves decay anisotropically. In 1958, a group at the European Organization

for Nuclear Research (CERN) began studying ways in which to make a measurement of
aµ. Over the next 20 years, three very successful experiments at CERN measured aµ;
each experiment improved on the previous one, and each experiment probed new scales of
physics.

The basic principle of each CERN experiment (and that of the current BNL experiment)
is to trap polarized muons in a magnetic field and measure the evolution of s·p as a function
of time. As will be described more fully in Section 2.2, the time dependence of the angle θ
between s and p of a muon orbiting in a magnetic field is

ωa =
dθ

dt
= aµ

eB

m
(2.1)

Therefore, simultaneous measurements of both ωa and B determine aµ.

The very first measurement of the anomalous magnetic moment of the muon was made
at CERN in 1961, where aµ was measured to be 0.001162(5) [39]. Muons from the CERN
Synchro-cyclotron were injected into almost circular orbits in a 6 meter long magnet with
a magnetic field of 1.58 T. A carefully shaped gradient in the magnetic field made the
circular orbits drift along the horizontal axis of the magnet. The spin direction of the exiting
muons was measured by stopping the muons in a field-free absorber and recording the decay
electrons in forward and backward counter telescopes [40]. This first result confirmed the
QED predictions for a point particle.

The measurement in the first experiment was severely limited by the muon lifetime
of 2.2 µs, which allowed the precession to be measured over only two cycles, or ∼ 8 µs.
The next experiment therefore sought to decrease the experimental error by increasing
the number of precession cycles using relativistic muons in a weak-magnetic-focusing ring
magnet (B0 = 1.72 T, n = 0.13) [40]. Stored muons were obtained by first injecting a
focused proton beam onto a target inside the storage ring; pions of momentum ∼ 1.3

15
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GeV/c created in the collisions begin to turn in the storage ring, and a small fraction of
muons from pion decay, born at small forward angles and on average polarized, fall onto
stable orbits. The second CERN experiment found aµ to be 116 616 ± 31 ×10−8 (270 ppm),
reducing the uncertainty on the experimental value by a factor of 16. However, the use of
magnetic field gradients to focus the muons destroyed the homogeneity of the magnetic field
and introduced a limiting systematic error on the measurement of the average field seen by
the muons.

A third and final set of measurements were made using an approach similar to that of
the second experiment, although with a radically different storage ring. Most of the im-
provements over the second CERN experiment arose from increasing the relativistic factor,
γ, from 12 to 29.3. Not only did this increase the number of (g-2) oscillations per muon
lifetime, but, more importantly, at this special γ the effect of electric fields on the spin
precession frequency vanishes. In the CERN III experiment, electrostatic quadrupoles were
used to vertically focus the beam in the storage ring, eliminating the need for gradients
in the magnetic field and allowing for a more precise determination of the magnetic field.
Finally, by directly injecting pions, the background was decreased which allowed an increase
in beam intensity. The CERN III experiment was able to decrease the statistical and sys-
tematic error of aµ by a factor of nearly 37, and confirmed the theoretical predictions of
the first-order hadronic loop contributions to aµ:

aµ+ = 1165911(11) × 10−9(10ppm) (2.2)

aµ− = 1165937(12) × 10−9(11ppm) (2.3)

aµ = 1165924(8.5) × 10−9(7.3ppm) (2.4)

where aµ is the average of the two µ+ and µ− values.

2.2 Principle of the Experiment

The measurement of the anomalous magnetic moment of the muon at BNL, designated
“E821”, is based on the same methods as the third measurement at CERN in 1979, with
the goal of a 20-fold improvement in the error. The improvement in the statistical error is
made feasible by the ∼ 200× increased muon flux produced by the BNL AGS, improved
energy resolution and the muon injection scheme described in Section 2.4.2.

Polarized muons are injected into a storage ring with a vertical magnetic field ~B =
(0, By, 0) . Electrostatic quadrupoles, which produce electric fields in the radial and vertical

directions, ~E = (Ex(~r), Ey(~r), 0), vertically focus the muon beam. The equations of motion
for the spin vector of a muon in flight in external magnetic and electric fields were first
calculated by Thomas [41], but often referred to as the BMT equations (for Bargmann,
Michel and Telegdi’s work [42]):

~ωs =
e

m

[(

g

2
− 1 +

1

γ

)

~B −
(

g

2
− 1

)

γ

γ + 1
(~β · ~B)~β −

(

g

2
− γ

γ + 1

)

(~β × ~E)

]

(2.5)

where e is the charge of the muon, and m is the mass of the muon.
The equations of motion for such a charged particle moving in external magnetic and
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Figure 2.1: n(y) and A(y), the energy-dependent weighting function and asymmetry of
muon decay in the rest frame of the muon.

electric fields are
~̇p = ~ωc × ~p = e(~β × ~B + ~E) (2.6)

where the cyclotron frequency ~ωc is:

~ωc =
e

m

[

1

γ
~B − γ

γ2 − 1
(~β × ~E)

]

(2.7)

The difference between these two frequencies, ~ωs − ~ωc = ~ωa is known as the “spin difference
frequency”. Grouping similar terms and using aµ = (g − 2)/2 we find

~ωa =
e

m

[

aµ
~B − aµ

(

γ

γ + 1

)

(~β · ~B)~β −
(

aµ − 1

γ2 − 1

)

(~β × ~E)

]

(2.8)

Assuming the motion of the muons is always perpendicular to the magnetic field of the
storage ring, we may ignore the ~β · ~B terms. Furthermore, we choose the γ of the muons to
be the “magic” value ' 29.3, so that the ~β × ~E term drops out. The equation for the spin
precession frequency therefore reduces to

~ωa =
e

m
aµ
~B (2.9)

and the measurement of aµ requires two independent measurements, one of ωa and one of
B.

Two assumptions were made in order to arrive at Eq. 2.9: ~β · ~B = 0 and aµ−1/(γ2−1) =
0. Neither of these assumptions are exactly true for all muons, and small corrections are
made to the measured spin precession frequency to account for these assumptions. The
correction for the fact that the muon’s trajectory is not always perpendicular to the magnetic
field is called the pitch correction, and the correction for the fact that the injected muons
are momentum dispersed, and thus not all muons have the magic momentum, is called the
radial E-field correction. Both these corrections are of the order ∼ 0.3 − 0.4 ppm and will
be discussed later.

The measurement of the spin precession frequency relies on the parity-violating nature
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of the muon weak decay, µ− → e−νeν̄µ. In the rest frame of the muon, the differential
probability that the muon will decay into an electron with normalized energy y = E/Emax,
where Emax = 52.8 MeV, and angle θs relative to the muon spin is [43]

dP

dydΩ
= n(y)[1 +A(y) cos θs] (2.10)

where
n(y) = y2(3 − 2y) (2.11)

and

A(y) =
2y − 1

3 − 2y
(2.12)

The functions n(y) and A(y) are plotted in Fig. 2.1, from which we see immediately that
many more muons decay to electrons with y > 0.5 than with y < 0.5 and the average
asymmetry of the decay electrons with y > 0.5 is positive, whereas it is negative for those
electrons with y < 0.5. Therefore we find that electrons are emitted preferentially in the
direction of the muon’s spin. Indeed, simply integrating over all energies, we see that

dP

dΩ
=

1

2

(

1 +
cos θs

3

)

(2.13)

In the lab frame, the energy of the decay electron is

Elab = γ(E + βp cos θ∗)

' γE(1 + cos θ∗) (2.14)

where E and p are the energy and momentum of the electron in the muon rest frame, γ comes
from the relativistic boost and θ∗ is the decay angle in the laboratory frame. High-energy
electrons therefore are emitted along the direction of the of the spin of the muon.

Taking into account that in the laboratory frame the muon’s spin precesses relative to
the momentum vector (therefore, cos θs → cos(ωat+ φ)) and that the muon decays with a
lifetime of γτ0 = τ , one expects the number of observed decay electrons above an applied
energy threshold Eth to be

N(t) = N0(Eth)e−t/τ [1 +A(Eth) cos(ωat+ φ)] (2.15)

The phase φ comes from the initial spin polarization of the muons. By plotting the
number of decay electrons observed as a function of time, one may extract ωa by fitting the
data to the above equation.

Since the determination of ωa is based on the number of counts, there is a statistical
uncertainty on ωa. If φ is not determined a priori, then one can easily show that the
statistical error on ωa is approximately

δωa

ωa
'

√
2

ωaγτ0A
√
N

(2.16)

The factor of
√

2 comes from the strong correlation between the phase φ and the frequency
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ωa. Since both A and N depend on energy-threshold and since we wish to minimize the
statistical uncertainty on ωa, the energy-threshold is chosen such that the product NA2 is
maximized.

The magnetic field is determined with Nuclear Magnetic Resonance (NMR), the mea-
surement of the Larmor spin precession frequency of proton in water

ωL(p) = ωp = gp

(

eB

2mp

)

(2.17)

where gp is the gyromagnetic ratio of the proton. Solving for B, we have

aµ =
ωa

ωp

mµ

mp

gp

2
=
ωa

ωp

mµ

mp

gp

gµ
(1 + aµ) (2.18)

We define
λ =

mp

mµ

gµ

gp
=
µµ

µp
(2.19)

and
R =

ωa

ωp
(2.20)

and therefore

aµ =
R

λ−R (2.21)

The value of λ used in this experiment comes from the Particle Data Group’s analysis [44],
which combines experimental and theoretical values of the hyperfine structure in muonium
interval ∆ν to obtain λ with an uncertainty of 0.03 ppm. λ has also been determined in an-
other experiment that measured the Zeeman transition frequency in muonium [45] to within
0.12 ppm. The Zeeman transition frequency measurement is in excellent agreement with
the muonium hyperfine experiment. In fact, the same NMR probe used in this experiment
for absolute calibration of ωp was also used in the muonium Zeeman effect experiment,
so that any systematic uncertainties involved with the value of λ are divided out in the
measurement of aµ.

2.3 Production and Injection of Polarized Muons

2.3.1 AGS Beamline

Polarized muons are produced at BNL via the AGS and relies on the parity-violating decay of
the pion, π− → µ−νµ. Protons are initially accelerated to 200 MeV/c by a linear accelerator
(LINAC), then raised to 1.6 GeV/c by a BOOSTER after which they are transferred to
the AGS where they are accelerated to a momentum of 24 GeV/c. The protons are then
extracted from the AGS, hit a target and produce, amongst other debris-particles, large
numbers of low energy pions. The pions are then momentum-selected and transported
along a 72 meter-long straight channel in which approximately one third of the pions decay
to muons. At the end of the straight channel, the particles are again momentum-selected
and injected into the g-2 storage ring. The AGS/g-2 beamline is shown in Fig. 2.2. The
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Figure 2.2: Top view of the AGS beamline. Protons are extracted from the AGS and strike
a Ni target. At the first bend the pions are momentum-selected for pπ = 1.017pmagic. The
second bend in the beamline momentum-selects muons at pµ = pmagic, after which the
muons enter the g-2 storage ring through a superconducting inflector.

AGS cycle is approximately 2.5 seconds, and in 2001 the protons were extracted at the end
of the AGS cycle in 12 bunches of RMS widths ∼ 22 ns, each bunch separated by ∼ 33 ms.
The AGS cyclotron frequency is 2.694 µs.

The proton bunches strike a water-cooled nickel production target designed specifically
to handle the high flux needed for this experiment. The target is made of 24 nickel disks,
each separated by 1.6 mm. The disks themselves are 15 cm in diameter and 6.4 mm thick.
The disks rotate around an axis parallel to the proton beam through a water bath and are
struck by the proton beam near their outer edge (∼ 7.5 cm from the center). The nickel
target was designed to handle thermal stresses induced by a maximum beam flux of about
7.5 teraprotons (TP) on target per bunch. In 2001, the maximum AGS beam intensity
obtained was ∼ 56 TP per AGS cycle, or ∼ 4.6 TP per bunch.

Many kinds of particles are produced in the proton-nickel collision, including pions
(π±,π0), electrons (e±), and protons (p and p̄). In order to maximize the number of stored
muons in the g-2 storage ring while reducing the number of other particles that can produce
a large background flash in the g-2 electron calorimeters, the particles exiting the target
are charge and momentum-selected at 3.147 GeV/c (1.7% above the magic momentum
p0 = 3.094 GeV/c) at the first bend in the beamline.

Since the pion has spin 0 and neutrinos are left-handed, conservation of angular mo-
mentum in the rest frame of the pion requires the spin of the decay muon to have the
same helicity as the associated neutrino. Therefore selection of forward-going decay muons
results in a polarization of ∼ 95% in the longitudinal direction. In 2001, the second bend of
the beamline in Fig. 2.2 selected negative muons (which have positive helicity) of the magic
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Figure 2.3: (a): Schematic of the spin distribution of muons obtained from pion decay due
to momentum selection in the beamline. The muon spins are ∼93% polarized along the
direction of momentum of the pions in lab . (b) and (c): Spin distributions as calculated
by BTRAF, a beamline transport Monte Carlo simulation.
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momentum (3.094 GeV/c). The momentum-selection results in an annular-cone spin dis-
tribution as depicted in Fig. 2.3(a). The beamline was simulated with BTRAF[46], a Monte
Carlo beamline transport simulation. Figs. 2.3(b) and 2.3(c) show the longitudinal spin and
transverse spin distributions, respectively, obtained from BTRAF.

The pion/muon beam was initially tuned and then monitored on-line using a series of 10
Segmented Wire Ion Chambers (SWICs) positioned at various locations along the beamline.
The SWICs consist of a cathode plane and 20 anode wires, positioned in both the radial
and vertical directions, that sit inside a volume filled with a gas mixture of 50% Ar and
50% CO2 [47]. When a charged particle passes through the gas mixture, electron-ion pairs
are produced and charge is collected at the anode wires, which are read out via a stand-
alone CAMAC system [47]. The total amount of charge accumulated on each anode wire is
proportional to the number of particles passing near that wire, allowing a determination of
both radial and vertical positions of the beam.

2.3.2 The Superconducting Inflector

The muon beam enters into the storage ring via a hole in the back leg of the ring magnet,
as shown in Fig. 2.4. The beam is injected at an angle of ∼ 11 mrad with respect to the
tangent of the central design orbit of the storage ring, and passes through both the storage
ring’s fringe and main fields before entering the storage ring. In order to protect the injected
beam from the fringing magnetic field lines upstream and to push the beam in the proper
direction, a device is required that provides an integral field of ∼ 2.6 T·m near the entrance
of the ring and maintains the homogeneity of the main magnetic field of the storage ring.

Various options were considered, but in the end a direct-current non-ferrous supercon-
ducting septum magnet, or inflector, was constructed [48]. The choice of a DC supercon-
ducting inflector instead of the more typical pulsed magnetic inflector was necessitated by
the fact that a pulsed magnet that could both handle the heating-stress and produce a
small-enough fringe field would have been extremely difficult to construct.

Fig. 2.5 shows a schematic cross-section views of the inflector. The inflector itself is 1.7
m long, and employs Aluminum-stabilized superconductor to make the coils and cryostat
design compact and to minimize the interactions of the incoming muon/pion beam. A 1.5
T field is produced close to the storage region by 88 turns of the superconducting coil (52
for the outer, 36 for the inner coil) using a truncated double cosine theta design. This
design maximizes the useful field region, yet minimizes the total ampere-turns [48]. A
superconducting magnetic flux shield surrounds the coils in order to trap the multipole
fringe field of the inflector inside itself so that the measurement of the g-2 storage ring field
is not compromised.

In order to have the storage ring magnetic field be as uniform as possible, there are no
gaps in the yoke or pole pieces (see Section 2.4.1), and the inflector must necessarily sit
outside the storage ring. In addition, because of engineering constraints, the aperture of the
inflector could not be made as large as that of the storage ring, resulting in a phase-space
mismatch for muon injection. The consequence of this will be discussed in Section 2.4.2.
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Figure 2.4: Top view of the injection point of the beam into the g-2 storage ring. An
inflector is necessary to cancel the local fringe field of the storage ring while at the same
time moving the beam onto a properly aligned trajectory.

(a) Cross-section schematic of the
storage ring at the point of injection.
The inflector necessarily sits outside
of the central storage region.

(b) Close-up cross-section schematic
of the inflector.

Figure 2.5: Cross-section view of the g-2 superconducting inflector, which connects the
AGS beamline to the g-2 storage ring by canceling the ring fringe field and producing a
magnetic field matching that inside the ring’s storage aperture. Note, however, that there
is no matching of phase space parameters between the inflector and storage ring.
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Figure 2.6: Cross section view of the g-2 storage ring.

2.4 Storage of Muons

2.4.1 The Muon g-2 Storage Ring

The storage ring used in E821 is a continuous C-shaped, super-ferric (superconducting coils
with an iron yoke) 1.451 T magnet of diameter 14.22 m. A cross-sectional view of the
magnet is shown in Fig. 2.6. The C-shape is dictated by the need to detect decay electrons
on the inside of the storage ring. Superconducting coils, although much more expensive
than copper coils, have several advantages which make a high-precision measurement of the
magnetic field much more feasible: relative low power requirements, low ripple currents,
thermal stability (once cold) and thermal independence of the coils and iron yoke.

Four NbTi/Cu superconducting coils, each made of 24 turns, power the magnet: two at
an outer radius drive the field across the storage ring gap, and two at inner radius above
and below the mid-plane cancel the flux in the ring center and improve the field quality
in the gap [49]. The coils are connected in series and operate at a current of 5200 A at a
temperature of 4.5 K; the current in the outer and inner coils flows in opposite directions.
The temperature of the four coils is maintained using liquid helium in three ring cryostats;
the outer coils share one and the two inner coils each have their own. The superconductor
is operated well below its critical current of 10000 A at 4.5 K (which produces a 2 T field)
[50].

In order to minimize the impact of inclusions and voids in the iron, the poles of the
magnet are made of very pure continuous vacuum cast iron with a typical carbon content
of 0.0003%, whereas the yoke of the magnet is made of conventional quality magnet steel
of typical carbon content of 0.07% [51]. The total weight of the magnet, about 750 metric
tons, comes primarily from the yoke. Minimizing the cost of the steel required a minimal
yoke cross-section, which in turn minimizes the total flux and requires a narrow pole. The
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narrow poles, however, make producing a very-uniform field over the 9 cm field aperture very
difficult. Furthermore, although the effect of variations in the yoke reluctance is reduced
by isolating the poles and yoke by wedge-shaped air gaps, this problem is never quite
eliminated. Finally, because of its size, it was necessary to build the magnet from 36 10◦

pieces, all of which vary within reasonable tolerances. These tolerances, however, lead to
large variations of the magnetic field when the pieces are assembled. A means to “shim”
the magnet, so that large local field variations may be eliminated, is required.

Shimming of the Magnet

Fig. 2.6 shows three ways in which the magnetic field can be altered to produce a very
homogeneous dipole magnetic field: edge shims, air-gap wedges and programmable current
windings that sit on the pole pieces. The edge and wedge shims provide a means to pas-
sively alter the local magnetic field, whereas the programmable current sheets, or correcting
surface coils, offer a means to actively adjust the magnetic field.

In addition to isolating the yoke and pole, the air gaps serve to shape the magnetic field
in the storage aperture by the help of iron wedges: the slope of the wedge-shape is calculated
to compensate for the field gradient due to the C magnet asymmetry, and changing the slope
changes the quadrupole component of the field, with much smaller changes in the sextupole
field and smaller-still changes in the higher poles. On the other hand, moving the iron
wedges in or out radially changes the dipole component of the field while having little effect
on the higher multipoles. There are 24 iron wedges for each 10◦ section of the storage ring;
moving all 24 wedges from one extreme position to changes the dipole field by 300 ppm,
and the effect of moving just one wedge has a typical half-width of 10◦ [50].

The surface coils, mounted on printed circuit boards, are constructed of 2×120 wires,
each separated by 2.5 mm, running azimuthally around the ring [49]. The coils are used to
correct the lowest multipoles to tens of ppm. Dipole correction coils were placed in the air
gaps between each 10◦ pole, but were never used.

The magnet was shimmed using an iterative process of mapping the magnetic field and
adjusting the edge and wedge shims to improve the field homogeneity. During these stages of
development, a “shimming trolley” was used to map the field around the ring. This trolley
is similar to that used to map the field inside the vacuum chamber during data taking (see
Section 2.5.3), however since the vacuum chamber sections had not been constructed at
the time, the shimming trolley rode on top of the pole pieces instead of inside the vacuum
chamber. Furthermore, the magnetic field beyond the storage aperture was measured by
the shimming trolley, which consists of 25 NMR probes and covers a wider cross-sectional
area than the trolley used to measure the magnetic field during regular data taking. The
POISSON[52] computer program was then used to calculate the necessary positions and
widths of the wedge and edge shims to reduce both the azimuthal fluctuations of the dipole
and to reduce the higher multipoles. The shimming process extended intermittently over
several years, with the last changes made before the 2000 data run.

2.4.2 Muon Injection and Beam Dynamics

A full top schematic of the g-2 storage ring is shown in Fig. 2.7. At the exit of the inflector,
the muon/pion beam sits 77 mm away from the central design orbit of the storage ring. In
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Figure 2.7: Top view of the g-2 storage ring. Three muon kicker modules are located ∼ 90◦

away from the the inflector (injection point) and four electrostatic quadrupole regions (Q1-
Q4) vertically focus the beam.
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α = 10.8 mrad

77 mm

7112 mm

injection

Figure 2.8: Schematic of muon injection. Muons are injected 7.7 cm from the center of the
storage ring, and must be kicked ' 10.8 mrad outward onto the central orbit of the storage
ring.

order to obtain stored muons, the beam is “kicked” onto a stable orbit by a fast, non-ferric,
pulsed magnetic kicker. Four sets of pulsed electrostatic quadrupoles, symmetrically and
discretely placed around the ring, provide vertical weak focusing of the beam.

Muon Injection

One of the main challenges in the BNL experiment is to store enough muons to obtain
the desired statistical uncertainty in a reasonable amount of running time. As previously
mentioned, a major difference between the current muon g-2 experiment at BNL and the
CERN III experiment is the method of injecting muons into the storage ring. The CERN
III experiment stored muons by first injecting pions into the storage ring. A very small
fraction (∼ 5 × 10−5) of these pions decayed with just the right phase space parameters
so that the decay muons ended up in stable orbits. This approach not only yielded very
few stored muons, but also produced large backgrounds which blinded the photomultiplier
tubes mounted on their detectors, the so-called “flash”. The flash forced the detectors to be
gated on fairly late after injection, further reducing the number of detected decay positrons.
A method was therefore developed of directly injecting muons into the E821 storage ring.
This “muon injection” scheme results in a greater number of muons stored per AGS fill,
and greatly reduces the flash in the detectors.

A schematic of the muon injection scheme is shown in Fig. 2.8. The beam is injected
parallel but radially offset by 77 mm from the tangent of the central orbit of the storage
ring, and since the radius of the central orbit is 7112 mm, the beam requires a change
(“kick”) in its trajectory of 10.8 mrad in the outward (positive) radial direction. An ideal
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Figure 2.9: Circuit diagram of the “ideal” kicker electronics. The inductor labeled M
represents the kicker magnet, T represents an English Electric Valve deuterium thyratron,
and CT is a current transformer which gives the current waveform [53].

kick would be a delta function at exactly one quarter of the betatron wavelength (to be
discussed in Section 2.4.2) of the injected muons. Since delta functions are a bit difficult to
reproduce in the laboratory, the kick must be made over some distance along the muons’
trajectory. For a beam momentum of 3.094 GeV/c and a magnetic field of 1.45 T, one finds
that a ∼ 0.1 T m kick is required. Simulation shows such a kick results in more than an
order of magnitude increase in the number of stored muons over the previously-used pion
injection method.

Various options for how to kick the beam were considered, and there were several con-
straints that made the design of the kicker challenging. In order to maintain the homogeneity
of the magnetic field of the storage ring, the kick cannot produce large eddy currents in the
vacuum chamber walls (which in turn produce small local inhomogeneous magnetic fields),
nor may magnetic materials be used. Furthermore, the length of the kicker is limited by
the space between the electrostatic quadrupoles, about 5 m. With these limitations, a fast,
pulsed, non-ferric magnetic kicker design was chosen.

Three contiguous modules, each consisting of a pulse-forming network and two thin Al
parallel plates 1.76 m long that sit just outside the storage aperture of the ring, provide
about 4200 A peak current running in opposite directions along the plates. This current
produces a magnetic field which partially cancels the local magnetic field of the storage ring
and extends the radius of curvature such that the muons are directed onto stable orbits.
The pulse-forming network is itself simply a LCR circuit, as shown in Fig. 2.9. The current
on the plates is of the form

I(t) = I0e
−γt/2 sin(2πfdt+ φd) (2.22)

where

fd =
1

2π

√

1

LC
− R2

4L2
, (2.23)
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Figure 2.10: Side view of a kicker module. The connector carries the high current to the
kicker-plates.

γ =
R

L
(2.24)

and

I0 =
V0

2πfdL
(2.25)

The design values of the resistance and capacitance of the circuit are 11.5 Ω and 10 nF. The
estimated inductance of the circuit is ∼ 1.6 µH. These parameters result in a decay time of
the waveform of ∼ 248 ns. Since the cyclotron period is only ∼ 150 ns, the beam receives
a small second and a smaller-still third kick.

In order to avoid dangerous sparking and overheating, the pulse-forming network sits
in a vessel filled with Dow-Corning 561 silicon dielectric fluid [53], labeled “oil” in Fig. 2.9,
and the HV feed-through extending from the fluid to vacuum connects the kicker magnet
to the rest of the electronics. If there were a mechanical failure of the HV feed-through,
the vacuum would be contaminated with oil. In order to minimize this risk, a buffer zone
containing 3M FC40 fluorocarbon (fluorinert) is placed between the fluid vessel and the
vacuum chamber. Fig. 2.10 shows a side view of a kicker module, and the locations of the
resistor stack, capacitor, HV feed-through and connector. The kicker plates are located at
the end of the connector. Fig. 2.11 shows a cross section of the kicker plates inside the
vacuum. The plates, which sit 50 mm away from the beam center, are 80 mm high, 1760
mm long and 0.75 mm thick, and are secured in place by HV Macor standoffs.

Focusing the Beam

Once inside the storage aperture, the injected muons must somehow be vertically focused.
Otherwise they would be quickly lost through the top or bottom of the storage ring. Hor-
izontal focusing is, of course, provided by the vertical magnetic field. Vertical focusing is
provided by electrostatic quadrupole fields inside the storage ring in four locations, symmet-
rically placed, covering roughly 43% of the total circumference of the ring. By symmetrically
covering only part of the ring, room is left for other devices inside the storage ring, such
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Figure 2.12: Quadrupole geometry: the four electrodes form a quadrupole electric field
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symmetry lines, whereas the axes x and y are along the chosen coordinate system of x, y,
and s. The symmetry of the field is shown in the solid blue lines connecting the plates.
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as the kicker and inflector. Unlike magnetic gradients, electrostatic focusing fields do not
affect the azimuthal homogeneity of the magnetic field of the storage ring itself, and, as is
discussed in Section 2.2, the effect of the electric fields on the spin precession frequency is
eliminated to first order by choosing muons of the “magic momentum”.

A cross-section schematic of the quadrupole electrodes is shown in Fig. 2.12. The solid
curved lines represent the electric field. The x and y axes are along the chosen coordinate
system of x, y, and s, where x = 0 is the center of the storage aperture at a radius of 7.112
m, y = 0 is the vertical center of the storage ring, and s is the azimuthal position in the
storage ring. The x′ and y′ axes are along the electric field’s symmetry lines, and it is trivial
to show that

Ex′ = κy′ (2.26)

and
Ey′ = κx′ (2.27)

where

κ =
∂Ex′

∂y′
(2.28)

Rotating to the chosen coordinate system of the x and y axes, we see that

Ex = κx (2.29)

and
Ey = −κy (2.30)

This simply shows that the electric field results in a restoring force in the vertical
direction, and a repulsive force in the radial direction. In order to keep the beam focused,
therefore, the restoring force of the vertical magnetic field must be stronger than the force
from the electric field in the radial direction.

The Lorentz force is

~F = q( ~E + ~β × ~B) (2.31)

Therefore in the radial direction, we have

Fx =
γmv2

r
− e

c
vBy + eEx (2.32)

Noting that for a particle exactly on the equilibrium orbit (r = R0) Ex = 0 and therefore

γmv2

R0
=
e

c
vBy (2.33)

Also, we can rewrite r−1 such that

1

r
=

1

R0 + x
' 1

R0

(

1 − x

R0

)

(2.34)
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Substituting 2.33 and 2.34 into 2.32, we find that

Fx = −eβBy(1 − n)
x

R0
(2.35)

where n is the field index defined by

n =
κR0

βBy
(2.36)

For the vertical motion, we have
Fy = −eκy (2.37)

The equations of motion are therefore

γmẍ+
γmv2

R2
0

(1 − n)x = 0 (2.38)

and
γmÿ + eκy = 0 (2.39)

Eqs. 2.38 and 2.39 represent simple harmonic motion with the frequencies fxBO
= fc

√
1 − n

and fyBO
= fc

√
n respectively, where fc = v/(2πR0) is the cyclotron frequency. This motion

is also known as betatron oscillation (hence the “BO” subscripts).

The above equations describe the motion of a single particle in both magnetic and electric
fields. However as mentioned above, in this experiment, the electrostatic quadrupoles have a
lattice design, with four-fold symmetry covering 43% of the ring. In this case, the equations
for x and y as a function of azimuthal position in the ring are [54]

x = xe +
√

εxβx(s) cos

[

νx
s

R
+ φx

]

(2.40)

and

y =
√

εyβy(s) cos

[

νy
s

R
+ φy

]

(2.41)

where xe = Re − R0 is the equilibrium position in the storage aperture, εx,y are ampli-
tude factors for the trajectories of individual particles, and βx,y(s) are the so-called Beta
functions, which are periodic. νx and νy are defined as [54]:

cos(πνx/2) = cos(li/R) cos(
√

1 − n0lq/R) −
1

2

(

2 − n0√
1 − n0

)

sin(li/R) sin(
√

1 − n0lq/R) (2.42)

and

cos(πνy/2) = cos(
√
n0lq/R) −

√
n0li
2R

sin(
√
n0lq/R) (2.43)

where n0 is the field index inside the quadrupoles, li is the length of the interval between
quadrupoles and lq is the length of a quadrupole. Therefore, n0 = n/0.43, li/R0 ' 0.90
and lq/R0 ' 0.68 in this experiment. However, since the four-fold symmetry period πR/2
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Order of Cosine Term Sine Term Order of Cosine Term Sine Term

multipole (Normal) [V] (Skew) [V] multipole (Normal) [V] (Skew) [V]

1 0.0 0.0 8 -5.5 -0.2
2 20177.8 0.1 9 0.0 0.0
3 0.0 0.0 10 -391.3 0.1
4 33.0 0.1 11 0.0 0.0
5 0.0 0.0 12 -6.5 0.0
6 -45.9 0.1 13 0.0 0.0
7 0.0 0.0 14 52.3 -0.1

Table 2.1: The multipole terms at r=4.5 cm, the edge of the muon storage region, for
negative muon storage and ±24 kV on the plates.

is much less than the period of the radial oscillations (∼ 2πR) and even smaller than the
vertical oscillations (∼ 6πR), we can in many cases use the field index n averaged over the
orbit (n = 〈n(s)〉) to make estimates. This results in betatron tunes νx = fxBO

/fc =
√

1 − n
and νy = fyBO

/fc =
√
n.

Since the field lines of a pure quadrupole field are hyperbolic, the ideal electrodes would
also be hyperbolic in shape. However, in order to improve the positioning accuracy and
lower manufacturing costs, each of the four quadrupole sections is made up of three 13◦

lengths, each length made of 4 flat electrode plates. Flat plates obviously produce higher
normal multipoles than hyperbolic plates, in particular the 12- and 20-poles. However, the
12-pole can be made near-zero by adjusting the width of the electrode, leaving the relative
strength of the 20-pole to be ∼ 2% that of the quadrupole. Table 2.1 lists the normal and
skew components of the electric field for flat plates held at ±24 kV.

The electrode plates are made of 0.5 mm thick grade 5052-H34 aluminum and mounted
on aluminum support frames using Macor electrical isolators. The placement of the quadrupole
plates was confirmed to be within ±0.5 mm of their design location (50 mm away from the
center of the storage volume) by a special survey taken in July of 1998 [54].

Each of the four quadrupole regions in the ring occupies 39◦, the support frames installed
in two 28◦ vacuum chambers (Fig. 2.13(a)). The upstream chamber contains one 13◦ seg-
ment, the other two segments sit in the downstream chamber. Because the quadrupole
lengths could not be accurately placed in the bellows sections which connect the vacuum
chambers to each other, there is a 4◦ separation between the first and second lengths.

Field emission from the high voltage quadrupole plates produces free electrons, which
can become trapped in the quadrupole regions. These trapped electrons oscillate about
because of the presence of E− and B-fields, which in turn could effect the determination
of the magnetic field, since the trapped electrons are not present during the magnetic field
measurement (the quadrupoles are turned off during the measurement of the magnetic field).
Trapped electrons also accumulate on the quadrupole plate support insulators, which can
result in sparking between the insulator and the positively charged vertical plate. To prevent
sparking, the quadrupoles are pulsed, the duration of which is ' 1 ms. To further reduce
the field emission, the quadrupoles were “conditioned” by applying ∼ 20% higher voltage
than normal for short periods of time. The integrated maximum B-field disturbance from
residual trapped electrons oscillating in the storage ring was determined [54] to be 0.03 ppm
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(a) Top view. (b) Cross-section view.

Figure 2.13: Top and cross-section views of the electrostatic quadrupoles inside the g-2
storage ring.

of the storage ring B-field (' 1.45 T).

Resonance, Muon Losses and Scraping

Resonances occur when particles repeatedly (synchronously) pass through perturbations in
the focusing fields. As a result, a stored beam becomes unstable and particles may be lost.
In this experiment, lost muons produce a non-exponential background in the decay electron
time spectrum. It can be easily shown [55] that the most general resonance condition for
both horizontal and vertical motion is

kνx + lνy = n (2.44)

where k, l, and n are integers and νx and νy are the betatron tunes defined above. Since
for our focusing scheme,

ν2
x + ν2

y ' 1 (2.45)

the effective n-value must be chosen with care to avoid resonances. Eq. 2.45 is not exact
because of the four-fold symmetry of the quadrupoles in the storage ring; the sum of the
squares is in fact slightly (∼ 2 × 10−3) larger than 1. Fig. 2.14 shows an area of the tune
plane encompassing the typical n-values used in this experiment. The various resonance
lines are drawn, as is the curve in Eq. 2.45. The two operating n-values for the 2001 data
set are also shown, n = 0.122 and n = 0.142. We note that in 1999 and 2000 data were
collected using n ' 0.137. However, this resulted in a rather large systematic error (to be
discussed later) in the determination of ωa. Therefore in 2001 it was decided to take data
at two different n-values in order to decrease the sensitivity of ωa to the n-value.
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Figure 2.14: Tune plane in the region near the operating values of the g-2 storage ring.

Beam losses cannot, however, be entirely avoided in the experiment. Therefore, to
further reduce the number of lost muons, at early times after injection (∼ 0 − 25 µs) the
beam is “scraped” against the edges of 3 mm Cu rings with an inner radius of 4.5 cm and
an outer radius of 5.5 cm. By adding differences in the voltages on the quadrupole plates
(effectively adding dipole terms to the electric field), the beam center is pushed vertically
down 2 mm and radially out 2 mm on one side of the ring and radially in 2 mm on the
other side of the ring. Those particles that sit on the edge of the allowed phase-space of
the storage ring, and are therefore more likely to be lost at later times, clip the edge of the
collimators, lose energy, are scattered and quickly lost. After some time (15 µs in 2000, 7
µs in 2001), scraping is slowly turned off with a RC time constant of 5 µs.

Coherent Betatron Motion

Because of the mismatch between the inflector and storage ring apertures, the phase-space of
the storage ring is not uniformly filled. Therefore a beam “image” is created in phase-space
((x,x′) or (y,y′)) at the exit of the inflector and is re-formed every integer and half-integer
betatron wavelength (the image is inverted at half-integer betatron wavelengths). This
beam motion is referred to as coherent betatron oscillation (CBO).

Fig. 2.15 illustrates this effect: at a particular position and time (s = Det. A,t = t1),
the beam has a given phase-space distribution. One cyclotron period later, at (s = Det.
A, t = t1 + Tc), the phase-space distribution of the beam appears different, and in fact the
same distribution as found at (s = Det. A,t = t1) does not re-form until the beam reaches
another location, in this example that of detector B, at (s = Det. B,t = t1 + tBO). The
phase-space distribution therefore “walks” around the ring, so at a given location in the
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Figure 2.15: Illustration of coherent betatron motion. The solid curves represent the beta-
tron oscillations of individual muons. Since the betatron oscillation period is longer than
the cyclotron period, the phase-space distribution at detector A varies with time.

ring, the phase-space distribution re-forms at the CBO frequency:

ωxCBO
= ωc − ωxBO

= ωc(1 −
√

1 − n) (2.46)

and
ωyCBO

= ωc − ωyBO
= ωc(1 −

√
n) (2.47)

In this experiment, the situation is complicated somewhat by the kick the muons receive
upon injection. Fig. 2.16 shows the time-dependence of the radial phase-space distribution,
(x, x′). For clarity, the kick is treated as a perfect delta function, however, as in the case
of the actual experiment, the beam is not kicked to the exact center of the acceptance-
ellipse (defined by the maximum and minimum values of x and x′ allowed by the storage
ring). Therefore the radial beam centroid and width oscillate inside the ring. Vertical
coherent betatron oscillations also occur, but the kick does not affect the vertical phase-space
distribution. Coherent betatron oscillations result in time-dependent acceptance effects,
which will be discussed in Section 4.3.1.

The Radial Electric Field Correction

To first order the effect of using electric fields to focus the beam on the spin precession
frequency is canceled by injecting muons at the “magic” momentum such that γ = γm =
1+1/aµ. However, the storage ring has a momentum acceptance of ±0.5% and the injected
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Figure 2.16: Schematic of the radial phase-space diagram of the beam at injection, just
before the kick and just after the kick. The image of the beam at the inflector rotates
around inside the storage ring acceptance-ellipse as a function of time.

beam is not mono-energetic. As a result, the observed spin precession frequency is reduced
by the presence of the ~β × ~E terms in Eq. 2.8 for off-magic-momentum muons stored in
the ring. The following second-order correction, called the Radial Electric Field Correction
(CE), must be applied to the measured spin precession frequency.

For a muon of momentum p 6= pm, the spin precession frequency is

ω′
a = ωa

[

1 − β
Er

By

(

1 − 1

aµβ2γ2

)]

(2.48)

where Er is the radial electric field and By is the vertical magnetic field. Substituting
p = βγm = (pm + ∆p), we find

∆ωa

ωa
= −βEr

By









1 − m2

aµp2
m

(

1 + 2∆p
pm

+
(

∆p
pm

)2
)









' −βEr

By









1 −
m2

(

1 − 2∆p
pm

−
(

∆p
pm

)2
)

aµp2
m









(2.49)

Since m2/aµp
2
m = 1, we find that

∆ωa

ωa
= −2

βEr

By

(

∆p

pm

)

(2.50)
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Using the relation
∆p

p
= (1 − n)

∆R

R0
= (1 − n)

xe

R0
(2.51)

where xe is the particle’s equilibrium radius relative to the center of the aperture of the
storage ring, and

E = κx = nβBy
x

R0
(2.52)

we find
∆ωa

ωa
= −2n(1 − n)β2 xxe

R2
0By

(2.53)

Assuming a perfect quadrupole field, the time-average of x for a given particle is simply xe

since the horizontal oscillations are perfectly sinusoidal. Since τµ � TxBO
(the period of

horizontal betatron oscillations), replacing x with xe is perfectly acceptable. Thus for each
muon,

CE =
∆ωa

ωa
= −2n(1 − n)β2 x2

e

R2
0By

(2.54)

The average value of CE depends on the average square of the equilibrium radius, 〈x2
e〉,

which must be either computed or, preferably, measured.

The Vertical Pitch Correction

Another second-order correction that must be applied to the measured value of ωa is the
so-called Vertical Pitch Correction (CP ). Eq. 2.9 assumes ~β · ~B = 0, yet the stored muons
have a vertical velocity component upon injection and the weak-focusing fields force the
muons to oscillate up and down inside the storage ring. This motion results in a smaller
magnetic force felt by the muons, thus a reduced observed spin precession frequency.

A general derivation of the vertical pitch correction may be found in [43]. Here we present
a derivation for the pitch correction for this specific experiment. We assume ~B = (0, By, 0),
~β = (βx, βy, βz), βx,y/βz � 1, and aµ = 1/(γ2 − 1). Hence, all ~β × ~E are neglected.

We consider a reference frame in which the momentum vector always lies in the y − z
plane, as depicted in Fig. 2.17. The x- and z-axes therefore rotate about the y-axis at a
frequency

ω =
e

mγ
By (2.55)

The pitch angle ψ oscillates at the vertical betatron frequency ω1 = ωBOy with an amplitude
ψ0:

ψ = ψ(t) = ψ0 cosω1t (2.56)

As shown in Fig. 2.17, the spin precession frequency is resolved into components parallel
and perpendicular to the plane P . However the parallel component changes in sign and
thus the net effect (time average) of the parallel component is zero. The perpendicular
component of ωa is in this coordinate system

ω⊥ = ωa = ωy cosψ − ωz sinψ (2.57)
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Figure 2.17: In a rotating coordinate system such that the momentum vector always lies
in the y − z plane, the vertical pitch angle ψ oscillates at the vertical betatron oscillation
frequency.

The components of the spin precession frequency vector are obtained using Eq. 2.8:

ωay =
e

m
aµBy −

e

m
aµBy

(

γ

γ + 1

)

β2
y

= ω0

[

1 −
(

γ

γ + 1

)

β2
y

]

= ω0

[

1 −
(

γ

γ + 1

)

β2β
2
y

β2

]

(2.58)

Since
βy

β
= sinψ ' ψ (2.59)

and
γ

γ + 1
β2 =

γ

γ + 1

γ2 − 1

γ2
=
γ − 1

γ
(2.60)

we have

ωay = ω0

[

1 −
(

γ − 1

γ

)

ψ2
]

(2.61)

Next we have

ωaz = − e

m
aµBy

(

γ

γ + 1

)

βyβz

= −ω0

(

γ

γ + 1

)

β2β
2
y

β2

βz

βy
(2.62)

Since
βy

βz
= tanψ ' ψ (2.63)
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then

ωaz = −ω0

(

γ − 1

γ

)

ψ (2.64)

Inserting Eqns. 2.61 and 2.64 into Eq. 2.57 and using the small angle approximation for ψ,
we find

ωa = ω⊥ ' ω0

(

1 − ψ2

2

)

(2.65)

Therefore we find that to a very good approximation,

CP =
ψ2

2
(2.66)

and the average value of CP depends on the average value of the square of the vertical pitch
angle, 〈ψ2〉, which must be computed or, preferably, measured.

2.4.3 Monitoring the Muon Beam

Fast Rotation Analysis

As discussed in Section 2.4.2, determining the average radial distribution of the stored muon
beam is necessary for calculating the radial electric field correction to the spin difference
frequency. An effective method for determining this distribution was developed for the
second and third CERN muon (g-2) experiments, based on the debunching of the beam at
early times after injection. The time width of the beam (∼ 22 ns), is much smaller than the
cyclotron period (∼ 150 ns). The bunched structure of the beam results in a modulation in
the number of counts at the cyclotron frequency at very early times after injection. These
high-frequency modulations are often referred to as the “fast-rotation” modulation.

Since all particles travel at essentially the same speed (0.9994 c), those particles with
smaller equilibrium radii will move steadily ahead of those particles with larger equilibrium
radii. Therefore the time distribution broadens of over time at a rate which depends primar-
ily on the initial equilibrium radius distribution. Fig. 2.18 shows the time spectrum of the
decay electrons shortly after injection: the plot on the left shows a very large fast rotation
amplitude at early times (∼ 6 − 12 µs) after injection whereas the plot on the right shows
much smaller amplitudes at later times (∼ 36 − 42 µs) after extensive beam debunching.

A method to determine the average radial distribution of the stored muons developed
for the CERN muon g-2 experiments involves an iterative fit to the increasing time-width
of the circulating beam. An alternative method uses Fourier analysis of the same data [56].
Both methods agree quite well, as shown in Fig. 2.19. The values in Fig. 2.19(a) are with
respect to the design orbit radius of 711.2 cm. The mean radial positions of the beam as
determined by the two methods agree within 5×10−5, and the widths typically agree within
5%.

Traceback Chambers

Another indirect means of measuring the stored muon distribution is by tracking the paths
of decay electrons. The point of decay of a muon is determined by the measurement of
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Figure 2.18: Time spectrum of decay electrons 6-12 µs (left) and 36-42 µs (right) after
injection. The short time-scale (“fast rotation”) oscillations are due to the structure of the
bunched beam, and the long time-scale oscillations are due to the g-2 oscillation in the
detected number of counts. Note the amplitude of the fast rotation oscillations dies away
at later times as the beam de-bunches.
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Figure 2.19: Equilibrium radial distributions obtained using two different fast-rotation anal-
yses.
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Figure 2.20: Sketch of the fiber beam monitors.

the radius of curvature of the path of the decay electron, assuming the decay electron is
emitted tangentially with respect to the equilibrium orbit (which is true, on average). The
distribution of decay vertices is directly related to the distribution of stored muons.

The paths of decay electrons are measured using a series of four straw tube “traceback”
wire chambers located just upstream of an electromagnetic calorimeter (detector number
20), which is located far away from the scalloped vacuum wall[51]. Each traceback chamber
consists of a pair of radially and vertically aligned sets of straws. Decay electrons produce
ionization signals in the straws. The paths of decay electrons, and hence their point of
decay, may be reconstructed (or “traced back”) from signals from contiguous straws and
chambers. Unfortunately, although traceback data were successfully collected during the
1999 and 2000 data runs, the chambers failed to respond in 2001 and no data were obtained
for the latest data run.

Fiber Beam Monitors

A more direct means of measuring the beam motion is via fiber beam monitors (FBMs),
shown in Fig. 2.20. A FBM consists of seven, thin, parallel scintillating fibers, running
either vertically or radially; the fibers are strung through an aluminum structure which
may be placed in the storage aperture of the ring when FBM data is taken. Otherwise the
structure sits above the storage aperture, away from the beam.

Four such detectors were built for this experiment, two x-y beam monitor pairs located
∼ 180◦ and ∼ 270◦ away from the injection point. The light output of each individual fibers
is directed into a photo-multiplier tube, the output of which is read out continuously by a
waveform digitizer. Because of data acquisition system constraints, only the first ∼ 10 µs
of data could be taken after injection.

In order to calibrate the signals from each fiber, the FBMs may be put in “calibration
mode”, where all seven fibers are rotated such that all fibers see the same amount of beam
(see Fig. 2.20). The signals from the fibers are compared to each other and normalized.
Once the response of the fibers are calibrated, the FBMs are put in “data mode”, where
the seven fibers are rotated orthogonal to the beam. The time-dependence of the beam
centroid and width can then be measured. The time and frequency spectra obtained from
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Figure 2.21: Time and frequency spectra of a single fiber read-out. The FBM is located at
∼ 180◦ from the injection point and data are read out for the first ∼ 10 µs after injection.
The high-frequency oscillations are due to the fast-rotation, the low-frequency oscillations
(seen only in the top plot) are due to coherent radial beam motion.

calibration data for a single fiber are shown in Fig. 2.21, where we see both a high- and
a low-frequency modulation of the time spectrum. The high frequency corresponds to the
fast-rotation; the bunched beam produces signals in the scintillating fibers as it passes by
the FBM. The low frequency corresponds to the radial CBO. As the beam moves in and
out radially, it moves back and forth across the individual finger. Plots of the measured
radial CBO are shown in Section 4.3.1.

2.4.4 Muon Injection and Beam Dynamics Simulation

Although various means exist to measure the muon distribution inside the storage ring,
further insight can be obtained from Monte Carlo simulation. A muon tracking simulation
named g2track, originally written in Fortran by S. Mane and consequently modified by E.
Efstathiadis and others, integrates the equations of motion in small steps around the g-2
storage ring. One could certainly write a tracking code using faster beam dynamics/optics
techniques. However, these techniques are designed to transport particles over large dis-
tances and are therefore unable (at least not efficiently) to take into account fluctuations
in a magnetic field to the order of one ppm. Using g2track, however, one can get a micro-
scopic view of the effects on the stored muon distribution of perturbations in the ~E and ~B
fields, which we have in the form of detailed electrostatic quadrupole field calculations and
precise measurements of the g-2 magnetic field.
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Figure 2.22: Coordinate system used in g2track.

The Equations of Motion

We are used to seeing equations of motion in terms of derivatives with respect to time.
However, in g2track it is more useful to think in terms of azimuthal position, so the
equations of momentum are a bit trickier to derive. The coordinate system used in the
simulation is shown in Fig. 2.4.4. +x̂ points radially out, +ŷ points vertically up, and +ŝ
is tangential to the central (design) orbit at the current azimuthal position.

To derive our equations of motion, we begin with

~F (t) =
d~p

dt
(2.67)

which we need to rewrite as ~F (s). Now,

~p(s) = ~p(s0) +

∫ t(s)

t(s0)

~F (t)dt (2.68)

= ~p(s0) +

∫ s

s0

~F (s′)
dt

ds′
ds′ (2.69)

= ~p(s0) +

∫ s

s0

~F (s′)t′ds′ (2.70)

where t′ = dt/ds.

However, in going from s0 to s, our coordinate system was rotated around the y-axis by
an angle

θ =

∫ s

s0

h(s′)ds′ (2.71)

where h(s) is the curvature of the orbit (in other words, 1/ρ(s)). So, we need to rotate p(s)
to our new “local” p, plocal:

~plocal(s) = ~R(θ)·~p(s) (2.72)

= ~R(θ) ·
(

~p(s0) +

∫ s

s0

~F (s′)t′ds′
)

(2.73)
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where ~R(θ) is the rotation matrix:

~R(θ) =







cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ






(2.74)

Now,

~F (s) =
d~plocal(s)

ds
(2.75)

=
d

ds
~R(θ) ·

(

~p(s0) +

∫ s

s0

~F (s′)t′ds′
)

(2.76)

From Eq. 2.71, we see that

h(s) =
dθ

ds
(2.77)

so that

d~R(θ)

ds
=







−h(s) sin θ 0 h(s) cos θ
0 1 0

−h(s) cos θ 0 −h(s) sin θ






(2.78)

which, in the limit θ → 0, gives us

d~plocal(s)

ds
= ~I · ~F (s)t′ +







0 0 h(s)
0 0 0

−h(s) 0 0






· p(s) (2.79)

where ~I is the identity matrix.

We can now write our equations of motion. Since

~F (s) = q( ~E + ~β × ~B) (2.80)

we find that

p′x =
dpx

ds
= qExt

′ + q(βyBz − βzBy)t
′ + hpz (2.81)

p′y =
dpy

ds
= qEyt

′ + q(βzBx − βxBz)t
′ (2.82)

p′z =
dpz

ds
= qEzt

′ + q(βxBy − βyBx)t′ − hpx (2.83)

We also need expressions for x′ = dx/ds, y′ = dy/ds, and z′ = dz/ds. Looking at
Fig. 2.4.4 we obtain the following relations:

z′ =
dz

ds
=
ρ+ x

ρ
= 1 + hx (2.84)

where h = 1/ρ
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x′ =
dx

ds
=
dx

dz

dz

ds
= (1 + hx)

px

pz
(2.85)

Similarly, we get:

y′ =
dy

ds
= (1 + hx)

py

pz
(2.86)

and so

dt

ds
=

1

v

√

(

dx

ds

)2

+

(

dy

ds

)2

+

(

dz

ds

)2

(2.87)

t′ =
(1 + hx)

v

pt

pz
(2.88)

where pt =
√

p2
x + p2

y + p2
z = total momentum. Eqs. 2.81-2.83 and 2.84-2.88 will be numer-

ically integrated in g2track.

Integration Routine

There are of course several different numerical algorithms to integrate ordinary differential
equations. Perhaps the best known is the Runge-Kutta method, which is robust, will work
on most ordinary differential equations (ODEs), but will produce low-accuracy solutions.
Since our equations of motion are quite smooth functions, the Bulirsch-Stoer method is
preferable. This algorithm calculates the values of the variables using a few different step
sizes, and take the limit as the step size approaches zero. It is considered the fastest and
most accurate routine known for the integration of smooth ODEs (see [57], for details), and
is implemented in g2track using the CERNLIB library routine DDEQBS.

Simulating The Kicker

The g-2 kicker is simulated in g2track as close as possible to reality. Therefore, three
“kickers”, with physical specifications identical to the real kickers used in the experiment,
are included in the g2track storage ring. The physics kickers in the simulation include three-
sets of two parallel kicker plates of the correct height, width and length. The simulation
uses a multipole kicker magnetic field.

Beginning in the 1999 run, the kicker pulses of each module were read out by a WFD
and placed into the data stream. Time-averaged kicker pulses are shown in Fig. 2.23. The
kicker WFD readout data were then fit to obtain the values of L, C and R for each kicker
module. However, fitting the data to the simple equation for an over-damped harmonic
oscillator resulted in too-large current values at later times (eg: after 800 ns). Therefore a
linear term was added to the fit function to bring this value down and give an improved
parameterization of the kicker current (see Fig. 2.24):

I(t) =
I0
ωL

e−Xt sin(ωt) + at+ b (2.89)
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Figure 2.23: Average kicker pulse shapes and T0 pulse shape, as read from WFDs.

where at+ b is the linear term,

X =
R

2L
(2.90)

and

ω =

√

1

LC
−X2 (2.91)

Calculations of the time varying magnetic field were made using the OPERA 2d package[58]
by Y. Semertzidis and incorporated into the earlier versions of g2track by E. Efstathiadis.
The value of the current and each muon’s position in the storage ring is then used in a
multipole calculation of the magnetic field (see [59]).

Simulating The Electrostatic Quadrupoles and Scraping

As with the kicker modules, precise physical descriptions of the electrostatic quadrupoles are
used in g2track. Four sets of four aluminum electrostatic quadrupole plates (top, bottom
and sides of storage region), matching the size and locations of the real quadrupoles are
evenly distributed around the ring. Multipole calculations of the electrostatic fields, both
during and after scraping, were made by Semertzidis using POISSON (see, for example, [60]).
In order to speed up the simulation, the electrostatic fields are obtained using a look-up table
of grid width 1 mm, and points in between are linearly interpolated. Edge and curvature
effects of the quadrupole plates are taken into account by increasing the effective length of
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Figure 2.24: Simulated kicker current pulse used in g2track. The pulse is calculated using
fitted values of L, C and R of a LCR circuit to a real kicker pulse.

the quadrupoles and adding a curvature correction to the calculated fields. Scraping turns
off with a linear interpolation between the scraping fields and non-scraping fields over 15
µs. The amount of time the beam is scraped is a variable in the simulation, typically set to
7-15 µs.

Input Muon Distribution

The input muon distribution is obtained from the BTRAF simulation, which tracks particles
from the point of the target all the way to the exit of the g-2 inflector. All beamline magnets
are included in the simulation. Figs. 2.25-2.26 show the radial and vertical distribution of
the injected muons, as well the radial and vertical phase space diagrams.

Tracking Results

Each muon created by BTRAF and successfully transported to the exit of the inflector is then
transported step-by-step through the g-2 storage ring. Although by default the vertical
magnetic field is held constant at 1.4513 T and there is no radial magnetic field, the user
has the option to include a multipole map of the magnetic field. When the muon enters the
kicker region or a quadrupole region it is subjected to the time-dependent magnetic and
electric fields found in those regions.

Fig. 2.27 shows the phase-space diagram of a muon during its first two turns around
the storage ring. The muon enters close to 7.8 cm outside the center of the storage ring;
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Figure 2.25: Injected muon radial and vertical distributions as obtained from BTRAF. The
asymmetry of the radial distribution is due to the shape of the inflector (see Fig. 2.5(b)).
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Figure 2.26: Phase space distributions of the injected muons, as obtained from BTRAF.
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Figure 2.27: Phase-space diagram of x vs. x′ for a single muon in the g2track simulation.
The muon is injected nearly 8 cm outside of the center of the storage aperture, and two
kicks, the result of the kicker current pulses being wider than the cyclotron period, are seen.

near 90◦ of the circumference of the ring later, the muon enters the kicker region, where we
see the resulting kick in both x and x′. The oscillatory (circular) motion of x vs. x′ arises
from the focusing electric fields. Note also that because the width of the kicker pulse is
greater than twice the cyclotron period (see Fig. 2.23), the muon receives a second kicks.
Therefore, although the timing of the kicker pulse is aligned such that the injected muons
see the peak of the kicker pulse, they also receive smaller second kick (and indeed a much
smaller third kick).

CBO is also easily seen using g2track. By looking at a single location in the ring (such
as where the fiber beam monitors, or FBMs, sit), we can measure the radial centroid of
the beam as a function of time. Fig. 2.28 shows the motion of the radial centroid of the
beam as determined in g2track, for an n-value of n ' 0.122. The oscillations were fit to
the function

〈x〉(t) = ACBOe
−t/τCBO cos(2πfCBOt+ φCBO) + xe (2.92)

where ACBO (P1 in Fig. 2.28) is the amplitude of the CBO oscillation, τCBO (P5) is the CBO
lifetime, fCBO (P2) is the CBO frequency, φCBO (P3) is the phase of the CBO oscillations,
and xe (P4) is the average radial beam position. The frequency agrees extremely well with
the expected frequency, as we see that the fitted lifetime of the CBO is of the order 100 µs.

Tracking of Lost Muons

g2track is also well-suited to study lost muons. Since a multipole expansion of the electric
field is used in the simulation, muons are indeed lost in g2track. Figure 2.29 shows a scan
of the fraction of lost muons per muon lifetime over different quadrupole high-voltages used
in g2track. The quadrupole voltages have been calibrated by comparing the radial CBO
frequency found in the simulation to that found in the data. Two resonances are apparent



51

µs

<
x>

 (
cm

)

Radial Beam Centroid Time Evolution

  110.4    /   734
P1  0.5807  0.5231E−02
P2  0.4220  0.2393E−05
P3  0.2040  0.4137E−02
P4  0.2745  0.7770E−03

  2.427  138.8P5

−0.2

0

0.2

0.4

0.6

0.8

1

30 40 50 60 70 80 90 100 110 120 130 140

Figure 2.28: Results from g2track in “FBM” mode, with quadrupole voltages set to 21.7
kV. The radial beam centroid from the simulation is measured mimicking what the fiber
harp detectors would see, and the results are fit to a five parameter function.

in this plot: one very large resonance which seems to have a peak near 22 kV, and a smaller
resonance which seems to have a peak near 26.2 kV.

We may compare the second resonance to a study done during the 2001 data run on
March 8, where the number of FSD double coincidences (see Section 4.2.7) were plotted as
a function of quadrupole voltage (the red triangles). These data are arbitrarily offset from
zero and have rather arbitrary units, however their relative heights are valid. We clearly
have a resonance which sits nearly 0.2 kV higher than the resonance seen in the simulation.
Since we know the electric fields used in the simulation do not exactly reproduce the fields
in the actual experiment, it is not surprising that these resonance do not exactly overlap.
Indeed, the fact that the peaks of the resonances agree to within 1% actually says much
about the reliability of the simulation. Unfortunately, no comparison between the simulation
to actual data for the larger resonance at the lower n-value can be made at this point, as
no data were taken at these n-values.

The time spectrum and azimuthal location of muons lost in g2track is shown in
Fig. 2.30. Although there are obviously too few lost muons in the distribution to be able
to make a meaningful comparison to the 3FC time spectrum, in general the simulated time
spectrum agrees with what we see in the data: most of the muons are lost before 70 µs, and
after that the level of lost muons is more or less flat. Finally, the peaks in the azimuthal dis-
tribution of the losses in g2track seem to be about ∼ 14◦ downstream from the collimators
placed in the simulation.

2.5 Magnetometer

The magnetic field is measured using pulsed NMR techniques. The field inside the storage
ring is mapped out a few times per week via a trolley which houses an array of 17 NMR
probes. In between trolley measurements, the field is “tracked” by approximately 120
“fixed” probes, which sit above and below the vacuum chamber. Furthermore, a feedback
loop consisting of a subset of the fixed probes adjusts the current in the superconducting
coils to stabilize the field. Before describing the NMR probe systems used in this experiment,
we first describe the fundamentals of NMR.
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Figure 2.29: Fraction of lost muons as a function of applied quadrupole high voltage.
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Figure 2.30: Time spectrum and azimuthal location of where muons are lost in g2track for
the low-n quadrupole HV setting.
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2.5.1 Nuclear Magnetic Resonance

All nuclei with nuclear spin ~I 6= 0 have a magnetic moment

~µ = γI h̄~I (2.93)

where γI is proportional to the gyromagnetic ratio. For a nucleus in a magnetic field ~B,
the Hamiltonian H is

H = −γI h̄~I · ~B (2.94)

The proton, having spin=1/2, has only two energy eigenvalues, E± = ∓γI h̄B0/2. The
difference between these two energies is ∆E = h̄ωL, where ωL = γIB0 is the Larmor
frequency. This is the fundamental condition for magnetic resonance absorption [61]. At
room temperature, the energy difference between the two eigenstates is extremely small
compared to thermal energies (∆E ∼ 10−5 · kT for B = 1.5 T). Therefore in a system
containing many protons at room temperature, the populations of the two energy levels are
approximately equal.

In a macroscopic sample of N nuclei, the sum of the magnetic momenta, ~M is defined
as

~M =
N
∑

i=1

~µi (2.95)

In thermal equilibrium and in an external magnetic field, ~M0 points in the direction of the
external field:

~M0 =
Nh̄2γ2

I I(I + 1)

3kT
~B0 ≡ χ0

~B0 (2.96)

where χ0 is the static nuclear susceptibility.

NMR measurements are made by turning ~M away from the direction of the magnetic
field using a pulsed RF signal. A circularly polarized field ~B1 perpendicular to ~M is applied,
which exerts a torque on ~M :

~τ = ~M × ~B (2.97)

where ~B = (B1 cosωt,−B1 sinωt,B0) and we have chosen our coordinate system such that
the external magnetic field lies along the z-axis. Therefore, the equations of motion for ~M
are

d ~M

dt
= ~M × ~B (2.98)

To explain the dynamics of the magnetization, we now choose a rotating coordinate system
with axes x′, y′, and z′, such that the x − y plane rotates about the z-axis (= z ′-axis), as
depicted in Fig. 2.31. In this frame,

(

∂ ~M

∂t

)

rot

= ~M × ~Beff (2.99)

where Beff = (B1, 0, B0 −ω/γI). As shown in Fig. 2.31, the magnetization precesses about
the effective magnetic field in the rotating coordinate system. In the resonance case where
ω is chosen such that ω = ωL = γIB0, the z′ component of Beff vanishes and ~M rotates
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Figure 2.31: In a coordinate system with the x − y plane rotating about the z-axis at a
frequency ω, the ẑ component of the external magnetic field B0 is reduced by −ω/γI . The
applied magnetic field B1 is orthogonal to B0, resulting in an effective magnetic field Beff .

A torque is exerted on the magnetization ~M which causes it to precess about the effective
magnetic field.

about the x′ axis.

If the RF signal is pulsed, ~M rotates about the x′ axis by an angle α = γIB1tp, where tp
is the pulse length. Using a pulse length tp = π/(2ωL), ~M is tilted by 90◦ such that it lies

along the y′ axis. In the non-rotating coordinate system, which is the lab frame, ~M precesses
around ~B0 and emits electromagnetic radiation at the Larmor frequency, ωL = γIB0.

The emitted RF signal decays in time as relaxation forces drive the magnetization ~M
back to its thermal equilibrium value. The relaxation process is referred to as free induc-
tion decay (FID). The time constant of the FID from the proton in pure water in a very
homogeneous magnetic field is of the order of a few seconds. Since a single 1 ms measure-
ment of the FID signal results in a 0.05 ppm uncertainty in the Larmor frequency, an FID
time constant of several seconds is three orders of magnitude longer than is required by the
proposed precision of this experiment. As a higher NMR measurement repetition rate is
desirable, the time constant of the FID signal is reduced to about 30 ms by diluting CuSO4

in the water.

The Larmor frequency of the proton in pure water at room temperature in a magnetic
field of ∼ 1.45 T is ωL ' 2π × 61.7 MHz. The width (FWHM) of the resonance line under
the same conditions is ωhalf ' 2π × 0.1 Hz[62]. The quality factor of the resonance line is
extremely high, ωL/ωhalf ' 6× 108, which makes NMR a natural choice for making precise
measurements of magnetic fields.
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Figure 2.32: A typical NMR probe used in this experiment. The H2O and CuSO4 solution is
contained in a cylindrical glass tube 15 mm long and 2.5 mm inner diameter. The cylindrical
symmetry minimizes the field distortions caused by the bulk susceptibility of all parts of
the probe.

2.5.2 NMR Probes

Fig. 2.32 shows a schematic of the trolley and fixed probes. A resonant circuit is formed by
two coils with inductances Ls and Lp and a capacitance Cs. The arrangement of the circuit
is shown in the lower-right corner of Fig. 2.33. The parallel inductor Lp serves to match the
circuit to the 50Ω line impedance. The capacitance Cs is formed by the Al housing of the
tube and a metal electrode; one may vary the capacitance by moving a Teflon ring in and
out, allowing one to tune the resonance circuit. A pulse from a low phase noise synthesizer,
stabilized by a Loran C receiver to 10−12 absolute accuracy [62], is sent into an amplifier
which sends a several-Watt RF pulse into the trolley NMR probe for up to 10 µs, exciting
the nuclear spins of the water sample.

After the RF pulse is emitted, the water sample emits a µV FID signal, which is received
by the NMR probe resonant circuit. Fig. 2.33 shows a schematic of the electronics of the
pulsed NMR system. The strong transmitted RF signal is decoupled from the weak FID
signal through a duplexer [62]. The FID signal then passes though a low-noise preamplifier
and is mixed with the synthesizer signal of a well-defined reference frequency, fref = 61.70
MHz. Since the reference frequency is close to the Larmor frequency fL, the resulting beat
frequency, fFID = fL − fref is in the KHz region. The NMR frequency is determined by
counting the number of zero crossings (Nz) of the FID signal and, simultaneously, counting
the number of cycles (Nc) of a precision clock, running at a frequency fc. Therefore, the
NMR frequency is

fNMR = fref +
Nz

Nc
fc (2.100)

The FID signal of the fixed probes is also digitized, and it is therefore possible to obtain
a time spectrum (see Fig. 2.34). The frequency obtained from the Fourier analysis of the
time spectrum agrees to within 0.01 ppm of the zero-crossing measurement [63].

Three types of NMR probes are used to measure the magnetic field of the g-2 storage
ring. The first type, described above and shown in Fig. 2.32 is used both in the trolley
system and the fixed probe system. The second type of probe is the so-called “plunging”
probe, used to calibrate the trolley probes with respect to one another. This probe, shown
in Fig. 2.35, is mounted on a stand at a fixed single azimuthal position in the storage ring
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Figure 2.33: The electronics of the pulsed NMR magnetometer. The NMR probe is rep-
resented by the lower-right resonance circuit. The multiplexer allows to serve up to 20
NMR probes, and the duplexer decouples the transmitted signal from the emitted signal.
The high frequency FID signal is mixed with a reference signal and the beat frequency is
measured.

and may be moved into the storage aperture in both the radial and vertical directions. Note
that the fundamental difference between the plunging probe and trolley/fixed probe is in
the shape of the water sample. In order to determine the field in very precise locations, the
water sample in the plunging probe is more localized in the spherical glass shell than the
long cylinder containing the trolley/fixed probe water sample. A standard probe, shown in
Fig. 2.36, provides the absolute calibration of the plunging probe and the central trolley
probe. With this probe, the Larmor frequency of protons in a spherical sample of pure
water was measured with a systematic uncertainty of 0.03 ppm [63].

2.5.3 The Trolley

The trolley is a vacuum-tight aluminum tube ∼ 0.5 m long, curved to match the curvature
of the storage ring. Fig. 2.37(a) is a photo of the trolley sitting inside an open vacuum
chamber; Fig. 2.37(b) shows the arrangement of the 17 NMR probes used in the trolley
to measure the magnetic field in different radial and vertical position inside the vacuum
chamber. The trolley tube is filled with air for better heat transfer from the electronics
inside to the trolley shell.

The trolley has 12 wheels which run on rails in the vacuum chamber but outside the
storage aperture. Since the trolley operates in the storage ring under vacuum, frequent
magnetic field measurements (once every 2-3 days) are possible and systematic errors that
would arise from having to open the vacuum chamber are eliminated. When muons are
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Figure 2.34: Time (top) and Fourier frequency (bottom) spectra of the FID signal obtained
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Figure 2.36: Schematic of the standard calibration probe.

injected into the ring, the trolley is stationed in a “garage” which sits outside of the storage
ring aperture, but is still part of the vacuum chamber. When measuring the magnetic field,
a mechanical structure in the garage pushes the trolley into position in the storage ring;
two cables are then used to pull the trolley around the storage ring, one of which is used to
send and receive signals to and from the electronics inside the unit. The length of the cable
inside the storage ring, and hence the azimuthal position of the trolley, is determined by
measuring the resistances of potentiometers attached to the drums around which the cables
are wound.

The trolley NMR probes measure the absolute value of the magnetic field | ~B|, not
the direction of the field. However, the radial and longitudinal components of the field
contribute less than 0.01 ppm of the absolute value and are therefore negligible in the
determination of the average B-field. Assuming ~B = (0, By, 0), then the 17 independent
NMR probe measurements may be fit to a multipole expansion of By:

By(x, y) = By(r, θ) = B0 +
4
∑

j=1

aj

(

r

r0

)j

cos(jθ) +
4
∑

j=1

bj

(

r

r0

)j

sin(jθ) (2.101)

where x is the radial position inside the storage aperture, (r, θ) are polar coordinates, and
r0 is chosen to be 4.5 cm, the radius of the storage aperture. The values of aj and bj ,
averaged over azimuth, and the average radial and vertical position of the beam are used
to determine the average magnetic field seen by the muons.

2.5.4 Data Acquisition System

The electronics and computers of the data acquisition (DAQ) system sit in a control room
set about 50 m away from the storage ring. The analog signals from the NMR probes are
sent to the control room through low-loss RG-213 coaxial cables. The DAQ system used
for the ωp measurement is a VME-based framework, shown in Fig. 2.33. A VME RS 422
module is used to select the NMR probe to be excited and read out. A VME frequency
counter is used to count the number of zero crossing of the FID signal; the counter operates
at 20 MHz for the fixed probes, and 61.74 MHz for the trolley probes. As mentioned in
Section 2.5.2, additional VME ADC modules may be used to obtain actual time spectra of
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Figure 2.37: Photo of the trolley sitting on the rails inside the vacuum chamber, and a
schematic of the distribution of the NMR probes inside the trolley.

Figure 2.38: Top view of location of a single detector used in the experiment. The shape of
the inner vacuum wall of the storage ring is scalloped in order to minimize scattering and
energy loss of the decay electrons, improving the resolution of the detectors.

the FID signal. A PC connected to the NMR VME crate reads the data from the VME
module memory buffers and saves them to disk. The PC also provides online monitoring of
the magnetic field and an interface to the superconducting coil current settings.

2.6 Muon Decay Detector System

2.6.1 Electron Detectors

The measurement of the spin precession frequency is essentially a counting experiment.
Twenty-four detectors, stationed symmetrically around the inside of the storage ring, de-
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termine the energy and time of the decay electrons. Fig. 2.39 shows a schematic drawing of
a detector station. Each detector station consists of a lead/scintillator fiber electromagnetic
calorimeter (labeled CALO). A subset of detector stations (14 in 2001) also have Front Scin-
tillator Detectors (FSDs), and a handful (5) also have Position Sensitive Detectors (PSDs)
(see below).

In order to reduce the amount of preshowering from the decay electrons as they pass
through the vacuum wall of the storage ring on the way to a detector, the inner storage
ring was built with a novel scalloped design (Fig. 2.38). This design results in most decay
electrons exiting the vacuum chamber nearly orthogonal to the vacuum chamber. The
detectors are placed very close to the outside of the vacuum chamber, in the position shown
in Fig. 2.38.

To ensure a systematic shift < 0.1 ppm in the spin precession frequency, the change
in energy response must be less than 0.2% over 200 µs, whereas the change in the average
pickoff time must be less than 20 picoseconds over the same amount of time. Therefore
the precession frequency is much less sensitive to changes in the energy threshold than to
changes in the average pickoff time. However, to protect the PMTs and the PMT bases
(the electronics directly connected to the PMTs) from the large flash produced after each
AGS injection (fill), the PMTs are gated off before and gated back on ∼ 6 − 20 µs after
each injection. The gate-on time (the time when the PMT is switched on) depends on the
detector’s azimuthal position, since those detectors located closer to the injection point see
more flash and may not be gated on until the neutron background drops to an acceptable
level. The PMTs are required to turn on to within ∼ 0.2% of the nominal gain in less than
∼ 10 µs. The PMTs were chosen and their bases were carefully designed and built by the
Boston University Electronics Design Facility to give the fastest rise time and reasonable
gain and linearity[64].

T0 Counter

The times of all decay electrons from different fills must be properly aligned with respect
to the time of injection, defined as T0. Therefore a 1 mm thick, 10 cm diameter Lucite
Cerenkov counter is placed upstream of the inflector. The light output from the Lucite of
this T0 counter is transported into a photomultiplier tube (PMT), the output of which is
recorded by a 400 MHz waveform digitizer. The shape of the T0 pulse is approximately
Gaussian with a width of 27 ns. The mean time of the T0 pulse for each fill is defined as
t = 0 for all decay electrons detected in that fill.

Electromagnetic Calorimeters

The calorimeter is made of polystyrene-based scintillating fibers embedded in a lead alloy
(Pb/Sci) [65]. The fibers are 1 mm diameter Bicron BCF-99-49A, developed from a fluor
used in BC-404 fast timing scintillator [65], oriented radially with respect to the storage
ring so that most decay electrons strike transverse to the axis of the fiber.

The calorimeter has dimensions 22.5 cm wide × 14 cm high × 15 cm deep. The plastic-to-
volume ratio was adjusted to yield a radiation length X0 of 1.14 cm so that the effect of side-
entering positrons is reduced while ensuring 93-96% electromagnetic shower containment in
the 1-3 GeV energy region of interest (in the center of the calorimeter).
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Figure 2.39: Schematic drawing and photo of one of the 24 electromagnetic calorimeters used
in the experiment. Light from the electromagnetic shower in each quadrant of the detector is
transported down the curved scintillator (light guides) and into individual photo-multiplier
tubes.

In order to limit the amount of light each single PMT is exposed to, and in order to
collect a sufficient amount of the light from the fibers and obtain uniform light collection, the
calorimeter is subdivided into four quadrants. Unwrapped, tapered UV-absorbing acrylic
light-guides, glued to the Pb/SciFi block, extend away horizontally and collect the light from
each quadrant. The light is then piped down a UVT acrylic rod, approximately 1 meter in
length and bent 90◦ downward. Finally, the light is collected by 2 inch Hamamatsu R1828
PMTs which have a transit time jitter of less than 240 ps and a 1.3 ns rise time, allowing
for fast and stable timing.

The voltages on the calorimeter PMT tubes were calibrated at the beginning of the
2001 data run using the decay electron energy spectra read out by CAMAC modules. In
general the voltages were set so that the energy spectra of the top and bottom halves of the
calorimeter agreed within 5-10%. During data taking, the time response of the calorimeters
were monitored with a laser calibration system. UV light emitted from a pulsed nitrogen
laser is guided along quartz optical fibers to the center of the storage ring. The light is
then split and guided by fibers connected to small Lucite blocks located on the large-radius
side of each quadrant of the calorimeter. A very stable solid-state photodidoe was used to
monitor the stability of the laser light output. A fraction of the data runs were designated
“laser runs”, where the laser was pulsed at pre-determined times. The pick-off time of the
laser pulses by each calorimeter is then compared to the actual times the laser was pulsed.
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Figure 2.40: A prepulse from the AGS triggers the DAQ system to acquisition mode, and a
triangular marker pulse is generated and input to each WFD module so that the two phases
of the WFD may later be time-ordered properly. Only pulses above a set hardware energy
threshold are written to memory and saved. Figure from [66].

Front Scintillating and Position Sensitive Detectors

To complement the electromagnetic calorimeters, just over half of the detector stations
are equipped with front scintillating detectors (FSDs) and five detector stations are also
equipped with position sensitive detectors (PSDs). FSDs consist of five strips of scintillator
which lay horizontally across the face of the calorimeter, thus providing information on
the vertical position of particles entering the front face (facing the scalloped wall) of the
detector. Each strip is 2.8 cm wide, 23 cm long and 3

8 inches thick, and is coupled to a gated
photomultiplier through an acrylic light guide. PSDs are 2D hodoscopes made of 32 vertical
tiles and 20 horizontal tiles. Each PSD tile is made of 7 mm wide, 8 mm thick scintillator
coupled through a wavelength-shifting optical fiber to a multi-channel photomultiplier or
hybrid photodiode. A multi-channel photomultiplier allows a large set of channels to be
read out by a single device.

2.6.2 Data Acquisition System

As with the magnetometer, analog signals from the calorimeters and FSDs are sent to the
DAQ system in the control room. The PSD signals are very small, and so to avoid noise
pickup, they are discriminated with electronics near the detector station, and digital signals
are sent to the control room. Analog signals of the electrostatic quadrupole voltages, muon
kicker module currents, and Fiber Harp PMTs are also sent to the same DAQ system.

In the analysis of the muon decay spectrum, the times and energies of the decay electrons
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are typically determined from pulses processed by custom-built waveform digitizers (WFDs).
The operation of the WFD is sketched in Fig. 2.40. These analog-digital converters (ADCs),
designed and tested by the Boston University Electronics Design Facility, basically act as
400 MHz digital oscilloscopes. The analog output of the four calorimeter PMT tubes are
summed together, and then sampled by two 8-bit 200 MHz flash ADCs (FADCs) operating
at opposite phases of a 200 MHz clock, giving an effective 400 MHz sampling rate. The
two phases are recombined by aligning the two phases of a triangle “marker pulse” which
is input to the WFD ∼ 50 µs before the beam is injected into the g-2 storage ring. The
marker pulse may also be used as a reference time for all WFDs.

Since the DAQ system cannot continuously process data from the electronics at the
required rates, a “hardware threshold” is set such that only pulses above the threshold
are digitized. The WFDs have 64 kB of memory for each detector per phase. Half of the
memory is used for time information, the other half is used for ADC samples. Time data are
kept in two byte (= 16 bits) segments of memory, the maximum value of which is 216×5 ns
= 327 µs. In order to enforce at least one time word write within each 327 µs clock period,
the WFD is put in “forced digitization” mode every 300 µs. Besides being used to record
the calorimeter data, the WFDs are also used in single-phase 200 MHz mode to digitize the
waveforms of the voltages of the muon kickers, electrostatic quadrupoles and fiber beam
monitors.

During the initial detector quadrant calibration, the individual quadrants are recorded
by CAMAC [67] ADC and time-to-digital converter (TDC) modules in conjunction with
the laser calibration system to determine the voltage settings of the individual calorimeter
PMTs. During data taking, information from the individual calorimeter quadrants is lost
by summing the four signals in the WFD. Some quadrant information is kept, however, by
recording the quadrant or quadrants in which the decay electron shower takes place. Four
“discriminator bit” flags are therefore attached to the time word in the WFD.

The time of the decay electron events from both the calorimeter WFD sum and the
individual FSD tiles is recorded by 800 MHz multi-channel time-to-digital converters (MT-
DCs). The calorimeter and scintillator pulses are converted to logic signals (discriminated),
and the MTDCs record the times of the two transitions of the square pulse in 20-bit time
words. The FSD hit patterns in the scintillator sticks are only recorded by the MTDCs.

The PSDs are read out with separate electronics modules operating at 50 MHz. The
PSD module records both time and position information, and may be set to trigger on
the calorimeter summed signal or self-triggered by a coincidence between the two detection
planes [66].

Fig. 2.41 shows a block diagram of the DAQ system used for the muon spin precession
measurement. The WFD, MTDC and PSD electronics are all VME [68] modules. The VME
bus uses 32-bit addressing to read out the modules on a common backplane and can operate
at rates of 5-20 megabytes per second (MB/s) depending on the data transfer scheme. Six
9U VME crates, each with its own front end CPU controller, are used in this experiment.
The front end CPUs read out the memory buffers from the electronics modules after each
fill of the g-2 storage ring and store the data on local memory. The front ends are connected
to a 6U VME event builder crate. Since the CAMAC data is relatively small in volume,
the event builder CPU reads out the CAMAC data over a VME-CAMAC interface module
after each fill of the g-2 storage ring. However since the VME data is quite large in volume,



64

C

U
P
U

S

S
B

S

S
B

K

N
I

K

N
I

K

N
I

K

N
I

W

F

D

M
T
D
C

P

S

D

C

U
P
U

S

S
B

C

U
P
U

S

S
B

A

C
D

T

C
D

online
computer

event builder crate
6U VME

from detectorsethernet

computer
slow control

.  .  .

...

CAMAC daisy chain

tape drive

VME-VME interconnectSCSI 2

signals

9U VME crate 1 9U VME crate 6

Figure 2.41: Block diagram of the DAQ system. Figure from [66].

the data in the front end memory is only read out by the event builder CPU between AGS
cycles, at which point the event builder CPU writes all VME and CAMAC data to tape via
a SCSI-2 connection.

The VxWorks [69] operating system (OS) is used on all front end and event builder
CPUs; a computer using the Linux [70] OS runs the UNIDAQ [71] data acquisition software,
and connects the user to the VME CPUs via an ethernet connection. A fraction (typically 5-
10%) of the VME data is copied to the Linux-based computer which displays the appropriate
time and energy distributions in real time. Data collection is broken up into short periods
called runs, which are numbered for ease of reference. A run typically contains about
5 − 25 × 106 decay electrons with energies > 1.8 GeV and decay times > 32 µs.

A time stamp from a common 100 Hz timer is recorded by both the ωa and ωp DAQ
systems so that the data may be correlated in the offline analysis. Furthermore, both DAQ
systems use a 10 MHz reference frequency provided by a Stanford Research Systems (SRS)
FS700 module locked to the Loran-C standard radio frequency. The SRS FS700 module is
stable at the 10−10 level, and the Loran-C is stable to 10−12. However, since the final value
of aµ involves the ratio ωa/ωp, any shifts in clock frequencies tend to cancel out.

2.6.3 Data Production

Two computer programs convert the raw WFD, MTDC and PSD data to easily readable
and accessible formats. The two data productions are based on very different frameworks;
the G2OFF production is based on Fortran and the HBOOK [72] and CERNLIB [73] libraries,
and the g2Too production is based on C++ and the ROOT [74] framework. Although the
two productions are implemented using very different frameworks, the algorithms used for
determining the energies and times of the decay electron pulses in the calorimeters are
very similar; they really only differ in their implementation. Because in this dissertation
only data from the g2off production were used to determine aµ, some of its more relevant
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features are described below.

Energy and Time Extraction Algorithm

In order to extract the time and energy of the decay electron pulses in the calorimeter,
the time-ordered WFD data for each fill and each detector are broken into segments, or
“islands”. Pulses are identified as local maxima, and the length of the island is defined by
a maximum time distance between consecutive pulses, typically 29 ns. An average pulse
shape for each detector is constructed [75] using ∼ 10 × 103 decay electrons 200 µs after
injection, at which time most islands have only one pulse and effects such as PMT gain,
flash and pileup are reduced to a negligible level. In the construction of the average pulse
shape, it is assumed that the pulse shape does not depend on the amplitude (energy) of the
pulse. This is of course true on average as long as the detector response is independent of
time.

The WFD ADC samples of all pulses are then fit to an average pulse shape with a
constant background (the pedestal) to obtain an energy and time. The amplitude of the
pulse scales linearly with the energy (or area under the curve) of the pulse; the energy
may therefore be obtained in arbitrary units of ADC counts from either the area or the
amplitude of the peak of the pulse. The ADC counts are later normalized to energy units
of “GeV” using the end points of the decay electron energy spectrum (see Section 4.2.1).
Detailed simulation studies showed [76] that the pulse-finding algorithm employed by the
G2OFF production has an effective low-energy threshold of ∼ 250 ± 33 MeV, and a small
(3 MeV) systematic shift in the fitted amplitude of the pulses. The shift is inconsequential
since it is later normalized away; however there is a small time-dependence of the fitted
amplitude of pulses of about 0.05 ADC counts, or < 0.05% for pulses above 1.5 GeV, from
∼ 32 − 100 µs after injection. As will be shown in Section 4.2.5, this time-dependence of
the reconstructed energy of decay electron pulses is two to four times smaller than other
effects resulting in “energy-scale changes”, and we may safely ignore this effect.

The time associated to each pulse, the “pick-off” time, is the fitted time of the pulse
peak. The uncertainty of the pick-off time is typically less than 100 ps [76] with a systematic
shift of ∼ 35 ps, depending on the energy. More importantly, the early-to-late change in
the average pick-off time in the fill is less than 2 ps.

Data Storage Format

The data are saved in the format of ntuples, data structures containing large amounts of
related information, accessible using either the interactive Physics Analysis Workstation
(PAW) program or the HBOOK Fortran library routines. A simplified diagram of the struc-
ture of the ntuples used in the G2OFF production is shown in Fig. 2.42. Appendix A contains
a full list of the 84 variables contained in the G2OFF ntuple. For each data run and for each
detector, data are saved in a time-ordered array of “events”, or AGS fills. Electrostatic
quadrupole voltages, muon kicker voltages, T0 pulse parameters, and many other parame-
ters are kept in a general data “block”. Separate data blocks of all time-ordered calorimeter
WFD, FSD and (not shown in Fig. 2.42) PSD events are created for each event. Note that
not all FSD events correspond to the same indexed WFD event; this is because in the g2off
production, FSD events are saved when there is a WFD event within a given time window.
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Figure 2.42: Simplified block diagram of the ntuple data structure created by the G2OFF

production for each detector and data run. Much more information is actually kept than is
shown here.

Since there are many low-energy pulses that are not seen by the WFD (below the hardware
threshold), several FSD pulses could fall within the WFD time window. It is up to the
analyzer to match WFD events to the FSD events.

2.7 Previous Results of E821

Experiment 821 at BNL has taken data over several months every year from 1997 until 2001.
With the exception of 2001, all “runs” measured the magnetic moment of the positive muon;
the polarity of all magnets were reversed for the 2001 measurement.

The first “run”, in 1997, used the same pion injection scheme as the CERN III exper-
iment. This was a commissioning run, where the various subsystems of the experiment
were tested. The value obtained for the anomaly agreed very well with the previous CERN
experiments, with a similar precision of 13 ppm [77]:

aµ+(1997) = 11659250(150) × 10−10 (2.102)

The following year the muon kicker was commissioned and data were taken using the muon
injection scheme. The benefits of muon injection were immediately obvious: the flash in
the detectors was greatly reduced and the number of muons stored in the ring per AGS fill
increased by an order of magnitude. The 1998 data run was cut short when a leak in the
water cooling unit of the Q1 magnet near the AGS V-line production target caused it to
overheat and fail. Still, in the few weeks that data were taken with the muon kicker, a 5
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ppm measurement of aµ+ was made [78]:

aµ+(1998) = 11659191(59) × 10−10 (2.103)

The decay positron time spectrum was fit to the five-parameter function

N(t) = N0e
−t/τ (1 +A cos(ωat+ φ)) (2.104)

and the total systematic uncertainty on aµ+ was estimated to be 1 ppm.

The 1999 run saw a 20-fold increase in the amount of data collected over the 1998 run,
resulting in a 1.3 ppm measurement [79]:

aµ+(1999) = 11659202(14)(6) × 10−10 (2.105)

With the huge increase in the amount of data, various backgrounds in the decay positron
time spectrum, such as pileup, coherent betatron oscillations and muon losses, were no
longer lost in the noise of large statistical fluctuations. Indeed, the fit χ2/d.o.f. of the
five-parameter function proved insufficient to fully describe the data at the ∼ 100σ level.
Therefore, the fit function and/or the data itself was modified to account for these effects,
resulting in an acceptable fit χ2/d.o.f. and a total systematic uncertainty of 0.3 ppm [79].

In 2000, another four-fold increase in the amount of data collected over the 1999 run
was achieved by increasing the flux of the AGS, and a 0.7 ppm measurement was made [80]:

aµ+(2000) = 11659204(7)(5) × 10−10 (2.106)

Several improvements were made that reduced certain systematics; a new superconducting
inflector magnet improved the homogeneity of the magnetic field and thus reduced the
overall systematic uncertainty on the measurement of ωp. AGS backgrounds, extraneous
particles from other bunches in the AGS ring, were reduced by about a factor of 10 using
a “sweeper” magnet in the straight, pion-decay-channel beamline. The sweeper magnet,
which was also used in the 2001 data run, is a traditional ferrite kicker with an RC time
constant of 700 µs. It is turned off just before each AGS fill of the g-2 storage ring, after
which it produces a maximum field of about 50 mT in 15 µs. The sweeper magnetic field
provides a ∼ 5 mrad kick to charged particles, effectively sweeping the beamline clean.
However, there was an increased rate and high level of flash in the detectors from attempts
to inject and store more muons in the ring, which forced the use of high hardware energy
thresholds in the WFDs. This resulted in rather late fit start times of the data, at ∼ 50 µs
after injection, a significant loss of data. Furthermore, as with the previous years, one “sees”
backgrounds more clearly with smaller statistical fluctuations: both the asymmetry, A, and
phase, φ, in the positron decay time spectrum are modulated at the CBO frequency, fCBO.
The ωa analysis was complicated by the fact that the effective weak-focusing field index
value of n ' 0.137 used in the 2000 data run resulted in a value of ωCBO very close to twice
the g-2 frequency, ωa. If not properly dealt with, the interference frequency, ωCBO − ωa,
from the asymmetry and phase CBO modulations produce time-dependent shifts in the
fitted value of ωa of up to 4 ppm. The results of many careful studies showed a systematic
uncertainty in ωa due to CBO of ∼ 0.2 ppm, with an overall systematic uncertainty of 0.3
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Figure 2.43: Brookhaven E821 measurements of aµ as a function of time. For comparison,
the theoretical values of aµ as reported in each year’s publication is shown in red.

ppm[80].
The 2001 run conditions were set to resolve and/or possibly study further the problems

found from the analysis of the 2000 data. The rates in the detectors and the hardware
energy thresholds were lowered to allow earlier fit start times. Data were collected at two
different n-values, n ' 0.122 and n ' 0.142, which correspond to CBO frequencies that are
below and above the second harmonic of the g-2 frequency by ∼ 30 kHz, respectively.

Fig. 2.43 shows the evolution of the experimental and theoretical values of aµ since
the 1997 run. The E821 Collaboration published results[77, 78, 79, 80] of the analysis of
each data run, and the theoretical values shown in Fig. 2.43 are those reported by the
collaboration at the time each year’s experimental result was published. The jump in the
theory value between 1999 and 2000 was the result of the re-analysis of the hadronic light-
by-light contribution discussed in Section 1.4.2.

The agreement of the measured values of aµ from year to year is remarkable. Further-
more, over a span of less than four years, and in less than 16 months of actual data taking,
the statistical uncertainty was reduced by an order of magnitude and the systematic un-
certainty reduced by more than a factor of two. Each year has presented a challenge in the
analysis of the data, and as will be discussed, 2001 is no exception.



Chapter 3

2001 Magnetic Field Measurement

The magnetic field was measured, in terms of ωp, by the trolley 20 times during the 2001 run,
and changes in the field between each trolley measurement were monitored using the fixed
probes. Two independent analyses of the magnetometer data were done by E. Sichtermann
and H. Deng. Two trolley probes, 4 and 8, did not function properly and were therefore
discarded by both analyses. The analyses differed in the treatment of the calibration data,
in the evaluation of the average field measured by the trolley, and in the selection of the
fixed probes used to interpolate the field between trolley measurement. These points will
be discussed further in Section 3.6.

The measurement of the magnetic field is limited by systematic uncertainties. Some
of the more obvious uncertainties arise from the calibration of the trolley probes, from
the trolley measurements, from the fixed-probe interpolation of the field drifts and from
uncertainties in the muon distribution.

3.1 Standard Probe Calibration

As discussed in Section 2.5.2, the standard probe measures the Larmor frequency of the
proton in a spherical water sample, ωpw

. Since we wish to use the Larmor frequency of the
free proton, ωpf

, a correction to the measured value of ωpw
must be applied to account for

the temperature-dependent diamagnetic shielding of the water molecule, σH2O(T ):

ωpw
= ωpf

(1 − σH2O(T )) (3.1)

The value of the shielding constant at 34.7◦C has been measured [81, 82]: σH2O(34.7◦C) =
25.790(14) × 10−6. The temperature dependence of σH2O in the temperature range of
5−45◦ C was independently measured [83], σH2O(T ) = 10.36(30)×10−9/◦C. The spherical
shape of the water sample, the use of pure H2O and the careful design and choice of
materials used in the probe reduce to a negligible level systematic effects resulting from the
bulk diamagnetism of the water sample, paramagnetic impurities in the water sample, and
paramagnetic and diamagnetic impurities in the probe structure. Extensive tests of the
standard probe determined an overall systematic uncertainty of 0.034 ppm in the absolute
value of the free proton Larmor frequency [62]. Uncertainties in the temperature of the
standard probe increase the uncertainty of the absolute calibration from 0.034 ppm to 0.05
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Figure 3.1: Relative fluctuations of the center trolley probe measurement of the magnetic
field around the storage ring. Figure from H. Deng.

ppm.

3.2 Trolley Probe Calibration and Measurements

The trolley probes are calibrated relative to the plunging probe by measuring the field with
each at the same azimuthal location in the storage ring. Both the plunging probe and the
center trolley probe are then calibrated absolutely to the standard probe. We therefore
expect systematic errors to arise from both the absolute and relative calibrations.

To minimize systematic uncertainties from positioning the trolley probe during the cal-
ibration measurements, currents in the surface correction coils were adjusted to minimize
the magnetic field gradients at the position of the plunging probe. Six comparisons of the
trolley probes were made using the plunging probe during the 2001 run, and from the aver-
age RMS scatter of these comparisons, an uncertainty of 0.07 ppm is assigned to the relative
calibration of the trolley probes.

The standard probe was used to calibrate the center trolley probes and the plunging
probe before and after the run. Six measurements were made, the average of which is
the final calibration used in the ωp analysis. The uncertainty of the absolute calibration
of the trolley probes is taken as the RMS of the distribution of the measurements, 0.05
ppm. Adding the relative and absolute calibration uncertainties in quadrature, the total
systematic error on ωp from the calibration with respect to the standard probe is 0.09 ppm.

Fig. 3.1 shows the relative homogeneity of the magnetic field around the ring, measured
by the center trolley probe. The fluctuations of 50-100 ppm are very large compared to
the uncertainty in each single measurement of ∼ 0.09 ppm. Therefore, uncertainties in the
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Figure 3.2: Contour plot of the dipole magnetic field, averaged over azimuth, in the storage
aperture. All values are relative differences with respect to the field in the center of the
aperture. The contour lines are 0.5 ppm wide. Figure from H. Deng[84].

trolley probe measurement are dominated by the uncertainty in the azimuthal position of
the trolley as it is pulled through the ring.

In 2001, two methods were used to determine the trolley’s position in the ring. The
first, employed in previous years’ analyses, uses two potentiometers attached to the drums
which pull the trolley cables. The readings from the potentiometers have uncertainties up
to 20 cm. However, as the trolley passes a fixed probe, a jump in the reading of the fixed
probe frequency is seen. By correlating the passage of the trolley to jumps in the fixed
probe readings, the uncertainties in the position of the trolley are reduced to 2 cm. A
new method uses an encoding system which directly measures the rotation of the drums.
Again, the position measurements are corrected using the fluctuations in the fixed probe
readings. The two methods of determining the azimuthal position of the trolley agree to
within ∼ 0.1◦, and the average difference between the measured dipole field using the two
methods in ∼ 0.02 ppm. Since the potentiometer method has slightly worse resolution than
the encoding system, the latter is used to determine the azimuthal position of the trolley.
The uncertainty of the trolley probe position during the measurements is 1 cm, resulting in
a systematic uncertainty of 0.05 ppm in the final value of ωp. Fig. 3.2 shows a contour plot
of the dipole magnetic field, averaged over azimuth.

3.3 Fixed-Probe Tracking of the Field Between Trolley Mea-

surements

Between the trolley measurements, fixed probes are used to monitor and to help maintain
the average magnetic field to within 0.1 ppm. Limits on changes in the fixed probe frequency
are set by comparing the average field determined by the trolley to the average field inferred
by the fixed probes. In 2001, there was typically about a 25 ppm difference between the
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average dipole field measured by the trolley and the fixed probes. Because of hysteresis, the
difference shifted after the currents for the main magnet and inflector were ramped down
and back up, so care must be taken to compare only those points when the currents in the
magnets had not just been ramped down. With this constraint, 14 changes in the difference
between trolley and fixed-probe average fields were available to monitor changes in the fixed
probe readings. The systematic uncertainty on ωp from changes in the fixed-probe tracking
of the field is calculated from the RMS of the distribution: 0.11 ppm/

√
2 = 0.08 ppm.

The fixed probes are located uniformly along the tops and bottoms of the pole pieces
of the magnet. There is a small gap at each junction of the pole pieces which affects the
local field. Therefore, those probes that are located near the azimuthal edges are given
less weight than those probes that are located at the azimuthal center of the poles. The
differences between trolley and fixed-probe fields discussed above depend on the fixed-probe
weights. The weights are therefore determined by minimizing the RMS of the distribution
of changes in these differences. The optimal normalized weights found in 2001 were 0.683
for the fixed probes at the azimuthal centers of the poles and 0.317 for the fixed probes at
the azimuthal edges of the poles.

3.4 Averaging over Muon Distribution

The determination of aµ requires a measurement of the magnetic field in the muon storage
ring, averaged over the muon density distribution, ρµ(~r) :

〈| ~ωp|〉 = 〈ωpy〉 =

∫

ρµ(~r)ωpy(~r)d
3r

∫

ρµ(~r)d3r
(3.2)

However, because the muon lifetime is much longer than the radial and vertical betatron
oscillation periods, and because the magnetic field is so uniform, it is sufficient to use

〈ωpy〉 = 〈ωpy〉(x̄, ȳ) (3.3)

where the magnetic field has been averaged over azimuth, and x̄ and ȳ are the average radial
and vertical positions of the stored muon beam. The uncertainties in the average radial and
vertical positions of the stored muons are taken as ±1 mm (from the fast rotation analyses)
and ±2 mm (from FSD studies) respectively. Using the amplitudes of the quadrupole
moments of the field at the storage aperture limits, the systematic uncertainty on 〈ωp〉
from uncertainties on x̄ and ȳ is 0.03 ppm [85]. g2track simulations which incorporate a
full 3-dimensional map of the magnetic field determined from trolley measurements have
confirmed that the difference between Eqs. 3.2 and 3.3 is smaller than the systematic error
on 〈ωp〉 arising from uncertainties on x̄ and ȳ [86].

3.5 Other Systematic Effects

Other, more subtle, systematic uncertainties are related to higher multipoles, kicker eddy
currents, changes in the trolley power supply voltage and temperature effects on the trolley
probes and electronics. These effects are lumped together as a single “others” systematic
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uncertainty. Although each effect results in a relatively small uncertainty in the measured
field, together they contribute a level of uncertainty comparable to the effects discussed
above.

A multipole expansion involves a sum over an infinite number of multipoles. However,
since the field is quite uniform inside the storage ring, only the first five multipoles of the
expansion for By are determined from fits to the trolley data. Measurements of the field out-
side the storage aperture using the the shimming trolley (which is physically larger in radius
than the trolley) confirmed that the size of the coefficients of the multipole terms higher
than the decapole moment are smaller than the the lower order terms of the expansion.
The missing higher multipole systematic error is estimated to be < 0.05 ppm.

The muon kicker produces eddy currents primarily in the kicker plates themselves, but
also in the the vacuum chamber walls. These eddy currents create a time-dependent remnant
magnetic field (RMF) after the kicker pulse; if large enough, the RMF could influence the
average magnetic field seen by the stored muons. The RMF produced by the kicker was
measured using the Faraday Effect technique described in [53]. For a 95 kV kick, the
systematic effect of the resulting RMF on the average magnetic field is measured to be less
than 0.1 ppm at ∼ 20 µs after injection.

The trolley probes and electronics are sensitive to changes in both the trolley power
supply and temperature changes. The average linear dependence of the measured field as
a function of operating voltage was determined in the 9.4-10.4 V range to be 0.38 ppm/V.
Since the trolley operated in the much smaller range of 9.85-9.90 V, the uncertainty from
trolley power supply fluctuations is 0.02 ppm [85]. Similarly, the dependence of each of the
trolley probes on the ambient temperature was measured to be 0.027 ppm/◦C [85]. The
uncertainty on the average ambient temperature during all trolley runs is less than 1◦C. An
upper limit of the systematic uncertainty from temperature fluctuations is 0.03 ppm.

Adding these uncertainties together in quadrature, a conservative estimate of the un-
certainty on ωp from “other” effects is set to 0.10 ppm.

3.6 Final Value of ωp

The two ωp analyses were cross-checked to verify computations and internal consistency.
One way in which the analyses differ is how significant field drifts during some of the
calibration measurements were handled. These drifts were observed by fixed probes ∼ 10◦

away from the plunging probe stand at the bottom of the vacuum chamber, but not observed
by the fixed probes above the vacuum chamber at the same location. Although the drift is
likely due to changes in surface coil currents, the true cause was not identified. Regardless
of the cause, the effect of these drifts on the calibration measurements must be taken into
account properly.

For the trolley probe calibrations, Sichtermann rejected an entire sequence of calibra-
tion measurements and Deng rejected only those measurements corresponding to times
when large drifts were observed. In the case of the calibration of the center trolley probe
with respect to the plunging probe, Sichtermann averaged trolley measurements before and
after the trolley was moved into position, whereas Deng used the measurement with the
smallest observed field drift. There were three plunging probe measurements common to
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ωp Systematic Error Table

Source of Error Size (ppm)

Absolute calibration 0.05

Calibration of trolley probes 0.09

Trolley measurements of B0 0.05

Interpolation with fixed probes 0.07

Uncertainty from muon distribution 0.03

Others 0.10

Total 0.17

Table 3.1: Systematic error table for the ωp measurement.

both analyses, and the RMS width of the distribution of the differences of the measurements
is ∼ 0.03 ppm, within the trolley and plunging probe calibration systematic uncertainty.

Although all trolley measurements were used by both analyses, the technique used to
calculate the dipole field integral differed. Deng used a grid of ∼ 9000 points and corrected
for non-linearities of the trolley probe position readout using the perturbation of the fixed
probes as the trolley passes. Sichtermann used the measured field values and determined
the azimuthal position of the trolley from the optical encoders. Using a common relative
calibration of the trolley probes, the average fields determined by both analyzers agreed to
within 0.04 ppm, again within the systematic uncertainty of the trolley measurement of the
average field.

Finally, differences exist in the way the analyses treated the fixed probes. Over half of
the fixed NMR probes were found to be unreliable and were therefore not used to monitor
the field. Sichtermann used 175 fixed probes, whereas Deng used 129 probes. Nearly all
of the probes in Deng’s selection are part of Sichtermann’s. Both analyses find the same
optimal values of the weights assigned to the fixed probes near the pole centers and near
the pole edges, 68% and 32% respectively. Since fixed probe measurements are perturbed
by the passage of the trolley, the fixed probe measurement must be interpolated from data
points before and after the trolley passes. Deng interpolates using measurements at fixed
time intervals before and after the peak in the perturbation and Sichtermann interpolates
using measurements at a fixed distance away from each fixed probe. A comparison of the
calculated average dipole fields of the two analyses as a function of run number shows that
the average fields agree to within 0.02 ppm, within the quoted systematic uncertainty.

The final values of both analyses agree to within 0.02 ppm, and the systematic uncertain-
ties determined by both analyses also agree at the same level. Table 3.1 lists the systematic
errors discussed above, and the total systematic error is taken from the quadratic sum of
all entries in the table. Applying the ∼ 26 ppm correction for the diamagnetic shielding of
the water molecule discussed in 3.1, the final value of the free proton resonance frequency
is ωp/(2π) = 61791400(11) Hz.



Chapter 4

2001 Spin Precession Frequency

Measurement

4.1 Data Selection

During the 2001 run, data were collected using two different electrostatic quadrupole high-
voltage settings, 21.7 kV and 25.3 kV, corresponding to effective n-values of n ' 0.122
and n ' 0.142, respectively. For this analysis the data were divided into two subsets, the
“low-n” (for n = 0.122) and the “high-n” (n = 0.142).

The data selection involved a series of quality and stability requirements, or “cuts”. As
discussed in more detail below, some requirements are checked on a run-by-run basis, others
are checked injection-by-injection (fill-by-fill). Individual decay electrons are only cut based
on software lower and upper energy thresholds.

To allow room for the traceback chambers, the vacuum wall just upstream is not scal-
loped. As a result, many electrons pass through the wall at a glancing angle and have a long
path length through the aluminum. Furthermore, some electrons pass through the thick
flange of the vacuum window upstream of the first traceback chamber[87]. The passage of
the decay electrons through so much material results in very poor energy resolution and a
distorted energy spectrum in detector 20. Therefore, no data from this detector are used
in the analysis of ωa, a 4% loss in the number of counts.

4.1.1 Run Selection

The “golden”, high-quality data runs used in this analysis were selected by C. Polly, X.
Huang, E. Sichtermann and others. Runs were selected based on experimental stability
(eg: only runs after the detectors were calibrated and the electrostatic quadrupoles were
“stable” were selected), accessibility/readability (some runs were simply lost or unreadable),
and data content. Details of the run selection may be found in [88].

In 2001, data runs were numbered from 9000 to 11384. From them a total of 978 runs
were selected, beginning at run number 9423 and ending at run 11384. 606 of the runs were
of the low-n data set. This corresponds to, roughly, 1.7 × 109 high-energy decay electrons
integrated between 32 and 675 µs for the low-n data set, and 1.2 × 109 for the high-n data
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set. With an average asymmetry of ∼ 0.38, 2.9 billion decay electrons corresponds to a
relative statistical uncertainty of ∼ 0.77 ppm for ωa.

An additional “silver+bronze” (S+B) set of runs was also analyzed. The S+B set
includes data taken under non-ideal, but still acceptable, run conditions, such as low kicker
and low scraping voltages runs. In addition, 13 golden runs which were missing from the
initial g2off production were reprocessed. All but four of the S+B runs were taken with the
low-n quadrupole high voltage settings. The “S+B” list consists of 54 runs, which contain
a total of approximately 160 × 106 high-energy decay electrons after 32 µs. Note, however,
that systematic studies were not done separately for this data set, which is only 1/10 the
size of the larger low-n data set.

4.1.2 Fill Selection

Quality-control was further enforced with fill cuts. We require that the electrostatic quadrupoles
be on for at least 700 µs after injection and that there be no sign of quadrupole sparking.
In the G2OFF ntuple, quadrupole voltage information is kept in the IQUAD, QEARLY, QMID
and QLATE variables. IQUAD is an integer number giving the length, in µs, of the quadrupole
pulse. QEARLY is an array of measurements of the voltages of the quadrupoles in arbitrary
ADC counts at the time of injection. Similarly, QMID is an array of measurements of the
voltages ∼ 45 µs after injection, and QLATE is an array of measurements of the voltages 30
µs before the quadrupole voltage drops to 80% of the QMID value. The QEARLY, QMID and
QLATE variables are averaged over 12 samples (1 sample/µs) from the times stated. To see
if the quadrupoles held charge and did not spark during a fill, we verify that the variables
QEARLY, QMID, and QLATE are not zero and that differences between these quadrupole read-
ings are not “out of range”. The range is determined from the distributions of (QMID-EARLY)
and (QLATE-QMID) values. By requiring (QMID-QEARLY) < 40 ADC counts and (QLATE-QMID)
< 15 ADC counts, fills where the quadrupoles sparked or completely failed are effectively
removed.

We also look for fills with missing (or “bad”) T0 pulses, fills where the laser was fired
and fills with a very small (< 15) number of pulses per calorimeter. Fig. 4.1(a) shows the
percent of “good” fills vs. run number. The low percentage of good fills early on in the
data-taking period is the result of the T0 cuts (see Fig. 4.1(b)). During these runs, the
voltage on the T0 counter was set so low that often the T0 pulse was below threshold, and
disappeared from the data stream. Although the low T0 counter voltage was eventually
noticed and fixed, approximately 15% of all fills failed the T0 cut. However in terms of
useful data, only 3.7% of the total number of pulses above the hardware threshold were
lost.

Late in the analysis, Q. Peng discovered a large number of “narrow pulses” in the g2off
data. Narrowness of a pulse is defined as

n =
a(kmax − 1) + a(kmax + 1)

a(kmax)
(4.1)

where a(k) = ISAM(k) − PED, ISAM is an array of 8 ADC samples of the pulse in the
WFD, k = 1, 8, kmax is the element in the array with the largest value (the peak of the pulse)
and PED is the minimum value in ISAM . Narrow pulses therefore have a small value of n,
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vs. run number.

Figure 4.1: Fill selection as a function of run number.

and “normal” pulses have values of n ranging from 1-2. Peng also succeeded in discovering
two types of narrow pulses, one with “one peak”, and the other with “two peaks”. The two
peak narrow pulses have been identified as pulses for which the two phases of the WFD
were not properly aligned. Noise on the baseline before the marker pulse confused the WFD
phase-alignment algorithm. Since the times and energies of all the pulses in such misaligned
fills are wrong, they must not be included in the final data set. Peng has also shown that
nearly all narrow pulses have a FITCHI21 greater than 20, whereas “good” pulses have a
FITCHI2 less than 18. Therefore, fills for which the average FITCHI2 is greater than 20 are
thrown out.

4.2 Construction of Decay Electron Time Spectra

4.2.1 Energy Calibration

Since the energy of a decay electron pulse is extracted from the WFD, the height of the
pulse is in arbitrary units of ADC counts. It is useful, although not necessary, to determine
a conversion between units of ADC counts and the more physical units of GeV. Since the
maximum energy a decay electron can have is 3.1 GeV, we use the endpoint of the decay
energy spectrum to determine the conversion factor between ADC counts and GeV and track
long time-scale changes in each detector’s response. The endpoint of the energy spectrum

1The FITCHI2 is an ntuple variable quantifying the quality of the fit to the pulse, similar to an unnor-
malized χ2. One cannot expect the average FITCHI2 to have a value of 1, and indeed the distribution of
FITCHI2 over all pulses has a mean value close to 3 and a very long tail, out to 18-20.
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Figure 4.2: Energy calibration on a run-by-run basis for detectors 3, 10, 17 and 23. The slow
change over time in the energy calibration could be the result of temperature changes and/or
degradation of the detectors and electronics. The small, sudden jumps in normalization are
the result of changes in voltages on the detector PMTs.

is determined by fitting a line to the region between ∼ 60−90% of the maximum value, and
extrapolating to zero counts. The point where it crosses the axis (the “endpoint”) is then
assumed to be 3.1 GeV. The endpoints for the G2OFF data production were determined by
X. Huang. Fig. 4.2 shows the endpoints for four individual detectors (3,10,17 and 24) on a
run-by-run basis. We see that over time the energies of the pulses drop by nearly 2%, and
in some cases there are sudden jumps in the ADC to GeV conversion. Temperature changes
most likely cause the long-term drift in the conversion factor, although degradation of the
detectors and electronics is also possible. The sudden jumps in the conversion factor have
been traced to changes made in the applied calorimeter PMT voltages.

4.2.2 Determination of Lower Energy Threshold

Since N and A are both functions of the lower energy threshold, we may minimize the
statistical uncertainty of the measurement of ωa by choosing our lower energy threshold
such that (NA2) is maximized. Therefore, time spectra were constructed for each detector
and each run with various lower energy thresholds. The time spectra were then summed
over runs and fit to the five-parameter function:

N5(t) = N0e
−t/τ (1 +A cos(ωat+ φ)) (4.2)

starting with t > 180 µs after injection. At these late start times, many background effects
such as pileup, muon losses, CBO and gain changes are minimized.

From these fits, we obtain A(Et) and N(Et) (and therefore NA2(Et)), where Et is the
energy threshold in units of GeV. The plots in Fig. 4.3 show the dependence of A, N and
NA2 on energy threshold for detector 1. A 7th order polynomial is fit to the histogram of
NA2 vs. Et, and the root of the derivative of the fitted polynomial is determined using the
CERNLIB function RZERO. Fig. 4.4 shows the threshold energies where NA2 is a maximum
for each detector, the same thresholds that are used to fill the time-spectrum histograms.
To eliminate as much pileup as possible, an upper energy cut of 3.2 GeV is applied to all
detectors when filling the time spectra.
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Figure 4.3: All plots are for detector 1. The histogram NA2 histogram is fit to a 7th order
polynomial in order to determine the energy at which the statistical error on the fitted value
of ωa will be minimized.
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4.2.3 Histogram Filling

The G2OFF ntuple only stores real number in single precision. Since we are trying to extract
a value from the data with better than than 1 ppm precision, the time of the decay electron
must be stored in double precision format. The double precision time obtained from the
pulse fitting algorithm is stored as two single precision times, one a multiple of 5 ns, the
other with a smaller value offset with respect to the first, larger time.

Furthermore, the detectors have slightly different energy responses and therefore have
different g-2 phases. If we were to add the data from the individual detectors are combined
into one time spectrum, the amplitude (A) of the g-2 oscillations would be slightly dimin-
ished. Therefore, we first fit the non-phase-aligned time spectra at ∼ 100 µs to extract the
g-2 phase for each detector. As expected for µ−, all phases are quite close to π. We then
build new time spectra with aligned g-2 phases, shifting the times by ∆t = (π − φ0)/ωa,
where ωa = 229.067 kHz.

The final time spectra are built using 150 ns-wide time bins. Using data in the range
0-675 µs, there are a total of 4500 bins per time spectra. The width of the time bin was
chosen primarily for its proximity to the cyclotron period of the g-2 storage ring.

4.2.4 Removing Pileup From the Data

When two (or more) decay electrons hit a detector within the pulse reconstruction algo-
rithm’s time resolution, the pulses cannot be separated and are treated as one pulse of
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higher energy. Therefore pileup events either add events to the time and energy spectra
(eg: two pulses below the lower energy threshold may add up to a pulse above the lower
energy threshold) or subtract events from the time spectrum (eg: two pulses above the lower
energy threshold add up to a pulse above the upper energy threshold). Since pileup is also
rate-dependent, and since more decay electrons are observed at the peak of the g-2 cycle
than at the bottom, the number of pileup events oscillates at the g-2 frequency. Further-
more, since pileup events include pulses with a different g-2 phase (eg, low-energy pulses),
the phase of the pileup g-2 oscillations is slightly different from that of the main signal of
single events. Therefore pileup events affect the decay electron time and energy spectra as
a background term with its own asymmetry and g-2 phase. In other words, pileup results
in a time-dependent asymmetry and g-2 phase, which causes a time-dependent, oscillating
fit value of ωa (often referred to as “phase-pulling”), unless dealt with appropriately.

A method of removing pileup from the time and energy spectra of single decay electron
events, developed by Y. Semertzidis, C. Özben [89] and others, involves constructing the
pileup time spectrum from the data itself. The approach is based on the principle that the
probability that two pulses may overlap is the same as the probability that two pulses will
be separated by a small time offset, such as 10 ns. The pileup time and energy spectra may
be statistically constructed by looking at “shadow”pulses, or pulses that follow an initial
trigger pulse, as described in Fig. 4.5. If a shadow pulse falls within a window (the size of
which is determined by the dead-time) some time-distance from the trigger pulse, we use
the energies and times of the two pulses to construct a pileup pulse.

In this analysis, we use the pileup construction algorithm derived in [89]. An energy-
dependent dead-time is used to select shadow pulses in the construction of pileup. The
energy and time of each constructed pileup pulse, ED and tD, are given as

ED = cL(E1, E2) × (E1 + E2) (4.3)

and

tD +
E1t1 + E2(t2 − toff)

E1E2
(4.4)

cL is an energy-dependent scale-factor for combining the energies of two single pulses into
one double pileup pulse. The energy-dependent dead-time and scale-factor cL (often referred
to as the “Logashenko coefficient”) were calculated via simulation and provided in a look-up
table by I. Logashenko. Typical values for the dead-time and scale factor are 2.9 ns and
0.96, respectively. The time offset of the shadow pulse search window is set to 12 ns for all
detectors.

The constructed pileup energy and time spectra are then subtracted from the original
spectra. Fig. 4.6 shows the energy spectra of a few of the individual detectors before pileup
subtraction (ALL) and the energy spectra of the constructed pileup events (PU). Note that
the number of pileup events goes negative around 2.6 GeV, which means that below this
energy, pileup events have a negative contribution to the number of observed decay electrons,
whereas above 2.6 GeV pileup events have a positive contribution. The actual energy at
which the pileup spectrum crosses zero as a function of detector is shown in Fig. 4.7.

Time spectra of the constructed pileup events using different energy cuts for detector 1
are shown in Fig. 4.8. Note that for the nominal cuts (1.9 < E < 3.2 GeV), the number of
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Figure 4.8: Constructed pileup time spectra for detector 1 using different energy cuts.

pileup events as a function of time oscillates near zero and therefore the integrated number
of events is very close to zero. This is not surprising, since if one looks at Fig. 4.6 it is clear
that from 1.9-3.2 GeV, nearly half the constructed PU events contribute negatively (the
lower energy events) and the other half contribute positively (the higher energy events).

4.2.5 Energy Scale Changes

Since N , A and φ are energy-threshold dependent, a changing detector energy response
during the fill results in ωa phase-pulling. We refer to changes in the observed energy
spectrum as “energy scale changes”. Since the PMT tubes of the electron detectors are
turned on 6-20 µs after every injection, the gain on the tubes is not stable until ∼ 10 µs
later. However, gain may not be the only cause of energy scale changes. The high level of
neutron background produced at injection causes small change in the fitted energies of the
decay electron pulses. Also, the pulse reconstruction algorithm may be rate-dependent. As
a rule of thumb, in order to claim an energy-scale change systematic uncertainty less than
0.1 ppm, changes in energy-scale should be less than 0.2% over 200 µs.

One way to get a handle on energy scale changes is to look at the average energy of pulses
as a function of time in the fill. Because the average energy oscillates at the g-2 frequency,
the data must be averaged over a g-2 cycle. Fig. 4.9 show the normalized average energy
vs. time, ξ(t), in the fill for a few detectors. The normalization is performed with respect
to the average energy of decay electrons detected after 250 µs, so that

ξ(t) =
〈E(t)〉
〈Elate〉

(4.5)
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Figure 4.9: Average energy vs. time after injection. The red circles are ξ = 〈E〉/〈Elate〉 for
non-pileup-subtracted data, the blue triangles are ξ for pileup-subtracted data.

where

〈E〉 =

∑Emax

Emin
N(E′)E′

∑Emax

Emin
N(E′)

(4.6)

The circles show the average energy vs. time before pileup subtraction and the triangles
show the average energy vs. time after pileup subtraction. We see that at early times pileup
raises the average energy by about 0.07-0.08%.

Most changes in average energy after pileup subtraction are less than 0.2% from 25-200
µs. However of particular concern are detectors 3-7 which show very large changes in ξ(t).
Moreover, the shapes of gain vs. time for these detectors not “behave” as those of the other
detectors. The origin of these large, odd-shaped changes in average energy during the first
100 µs for these detectors was an error in the treatment of island length by the G2OFF

production. Because of their close proximity to the injection point, detectors 3-7 see the
largest amount of flash, and at early times the calorimeter WFDs digitize continuously. The
very long islands of data seen during and just after continuous digitization of the WFDs are
broken up into smaller islands in order to fit the individual pulses. However, the pulses have
very long tails, and the average pulse shape to which the pulses are fit has a fixed island
length. Therefore fits to pulses on islands longer than that of the average pulse shape do not
properly account for the pedestal, resulting in a systematic shift in the average energy[90].
Logashenko has shown that one may treat this island-length effect on the extracted energies
of pulses as a linear energy-scale change. However, a related systematic error arises from
having multiple pulses on a single island, an issue which will be discussed and evaluated in
Section 4.4.2.
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Figure 4.10: To determine the sensitivity of average energy to gain, artificial gains were
applied to the data.

We therefore assume that the time dependence of the average energy is caused by some
linear effect on the recorded energies of the decay electrons. To correct for energy scale
changes, we scale the energy of each pulse according to

E(t) =
E(t)′

1 + (ξ(t) − 1)/m
(4.7)

where E′ is the observed energy of the decay electron at time t, E is the “true” energy
of the electron, and m relates a change in average energy to a change in gain. The shape
of the gain is parameterized by fitting a polynomial to ξ(t). In practice, the order of the
polynomial is chosen ’by eye’ such that the function passes through all the data points.

The relation between gain and average energy is determined by applying various software
gains to late-time data where energy-scale changes are assumed negligible. The slope m is
therefore

m =
∆ 〈E′〉

〈E〉

∆g
=

∆ ξ′

ξ

∆g
(4.8)

where 〈E′〉 (ξ′) is the observed (normalized) average energy of the gain-enhanced pulses,
〈E′〉 (ξ) is the “true” (normalized) average energy of the pulses, and g is the applied gain.
The plot on the left of Fig. 4.10 shows the dependency of ξ ′/ξ on gain for detector 10, and
the plot on the right shows the extracted slope, or m, for each detector.

Applying the scale factor (1 + (ξ(t)− 1)/m)−1 to each pulse used in the data, we see in
Fig. 4.11 a great improvement in the stability of the average energy vs. time. This implies
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Figure 4.11: Pileup-subtracted average energy vs. time before (circles) and after (triangles)
applying an energy-scale change correction.

that whatever is causing the changes in average energy vs. time has a dominantly linear
effect on the energies of the pulses. If this were not the case, if the effect were non-linear,
then applying a gain correction would not flatten out the average energy vs. time.

However, although the gain correction manages to flatten out the average energy vs. time
of the decay electrons, this does not necessarily mean that applying the gain correction is
the proper thing to do. A better judge of whether or not one should make the correction
is the time spectrum itself, or rather, the fit to the time spectrum. Although the fit to the
data has not yet been described, here we show results of fits to justify the application of
the gain correction.

Fig. 4.12 shows the fit χ2/d.o.f. for detector 25 when applying a -1× correction (open
circles), no correction (triangles) and a 1× correction (closed circles). We see that for the
low-n data set that there is a significant improvement in the fit χ2/d.o.f. when we apply
the gain correction. The improvement is considerably smaller for the high-n data set, the
reason for which has not been determined. As expected, the fits get significantly worse
when we magnify the gain in the data by applying a -1× correction.

Another parameter to investigate is the asymmetry. Since asymmetry is energy depen-
dent, the fit asymmetry will not be constant versus fit time if the average energy changes
with time. We see in Fig. 4.13 that when we do apply the correction (middle plots) the
fit asymmetry is more or less stable vs. time. However it does trend downward over time.
When the correction is applied (bottom plots), the asymmetry is still more or less stable
vs. time, but now it trends upward over time.

Based on the facts that the average energy vs. time is constant, the fit χ2/d.o.f. improves
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Figure 4.12: Comparison of fit χ2/d.o.f. vs. fit time between between un-corrected and
gain-corrected data.
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Figure 4.13: Comparison of fit asymmetry vs. fit time between uncorrected data sets (top)
and gain-corrected data sets (bottom).
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Figure 4.14: Comparison of time and frequency spectra of fill-randomized data and non-
randomized data.

and the fit asymmetry is flat vs. time after we apply a gain correction to the data, we
use gain-corrected data to obtain our final fit values for ωa. The systematic error from
uncertainties in the corrections are discussed in Section 4.4.2.

4.2.6 Beam Debunching and Fill Randomization

Because the muon beam is injected in bunches of width ∼ 20 ns, immediately after injection
the stored muons are not distributed uniformly around the storage ring. However, within
50 µs the bunch-structure of the injected muon beam is greatly diminished. Debunching
occurs because, although all muons travel at 0.9994c, the less energetic muons at smaller
radii have a shorter cyclotron period than the more energetic muons. Therefore the less
energetic muons actually catch up to and pass the more energetic muons.

The bunching of the beam results in a modulation of the counting rate at early times:

N(t) = N5(t) ∗ fbb(t) (4.9)

where
fbb(t) = Abb(t) ∗ cos(ωcyct+ φcyc) (4.10)

where bb stands for “bunched beam”, Abb(t) describes the decaying envelope of the bunched
structure of the muons in the storage ring, and ωcyc is the cyclotron frequency. However,
because the cyclotron frequency is so much higher than that of the g-2 frequency, instead
of modifying our fit function we can effectively filter out the cyclotron frequency from the
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Figure 4.15: Number of three-fold coincidences (3FCs) as a function of time in the low-n
2001 data. The oscillations at early times after injection are at the CBO frequency, and the
sharp spikes in the observed number of 3FCs are an artifact from the AGS background.

data by randomizing the time for T0 in each fill. Since the cyclotron period is very close to
149.185 ns, adding random times generated from a uniform distribution between -74.5925
to +74.5925 ns for each fill washes out the effect of the bunched beam. Fig. 4.14 shows
the FFT of the time spectra of the data from detector 17 with and without randomization.
The data are from between 0 and 200 µs, and is stored in five ns-wide bins. We see that
while the amplitude of the cyclotron frequency peak is reduced by 3 orders of magnitude,
the amplitude of the g-2 frequency peak is unaltered by the fill randomization procedure.
In the end, five histograms are built with different random numbers in each fill, and the
results of the final value for ωa is taken from the average of the five fits.

4.2.7 Muon Losses

As discussed in Section 2.4.2, beam dynamics resonances can cause muons to be lost before
they decay. Losses distort the assumed exponential shape of the decay electron time spec-
trum, resulting in unstable fit parameters, and a systematic error on the fit value of ωa. In
principle, if the functional form of the loss rate were known, this effect could be eliminated
by modifying the fit function appropriately.

To this end, a method of detecting lost muons was developed using coincidences in three
sequential FSD detectors. The details of this three-fold coincidence (3FC) approach are
found in [91]. Simulations have shown that nearly a third of the muons exiting the storage
ring pass through three detectors. Although a much larger fraction (60-70%) of lost muons
pass through two detectors (a two-fold coincidence, or 2FC), the dominant decay electron
background is eliminated more efficiently using 3FCs.
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The rate of 3FCs in the low-n data set is shown in Fig. 4.15. The time dependence
appears to have two exponential components, one with a ∼ 20 µs lifetime that dominates at
early times after injection, the other with a ∼ 50 µs lifetime that dominates from ∼ 100−200
µs after injection. The large spikes seen in the number of 3FCs after 80 µs are caused by
AGS background, or “flashlets”. Like true lost muons, the particles in the AGS background
deposit too little energy in the calorimeters to be observed in the WFDs, but are observed
by the FSDs (that is, they are minimum ionizing).

The CBO oscillations in the rate of 3FCs at early times after injection implies that there
is a preferred location in the storage ring for the muons to be “lost”. The relative number
of 3FCs depends strongly on detector location, and most 3FCs are observed approximately
90◦ downstream of the inflector. Since the vacuum wall in the inflector region is closer to
the storage aperture than anywhere else, it is likely that muons strike the wall, scatter, lose
energy and are observed by the detectors downstream.

Having determined the time dependence of the lost muons, the five-parameter fit func-
tion is extended to a six-parameter fit function:

N6(t) = N0e
−t/τ (1 +A cos(ωat+ φ))e−ALFL(t) (4.11)

where AL is the fraction of total losses,

FL(t) =

∫ t

t0
N3FC(t′)dt′, (4.12)

t0 is the fit start time, and N3FC(t) is the number of 3FCs as a function of time normalized
such that FL(∞) = 1. This approach is different from others used in the past, where the
functional form of the muon loss term was assumed to be either a Gaussian or exponential,
and both the amplitude and the lifetime were determined from fits. Use of the measured
3FC time spectrum substantially improves the χ2/d.o.f. of fits to the data, and is employed
by all fits to N(t) in the 2001 analysis.

The method has its drawbacks. The 3FC time spectrum is limited to only those lost
muons that pass through three sequential detectors, and is not measured everywhere around
the storage ring. Indeed, the shape of the 3FC time spectrum varies from detector to
detector. Therefore it is questionable that the 3FC time spectrum sufficiently represents
the true loss spectrum. The insensitivity of the ratio to the shape of the muon loss time
spectrum was one of the motivations in choosing the ratio method over conventional direct
fits to the decay electron time spectrum.

4.2.8 The Ratio Method

The ratio method was originally derived by Y. Orlov and first implemented by J. Kindem
[47]. Since then, the ratio method has been used in the analysis of the 1999 data by L.
Duong [66] and the 2000 data by B. Bousquet. While this analysis is based on previous
works, we have extended the ratio method to include CBO background terms.

Figs. 4.16-4.17 show how the ratio method works. The basic idea is to divide out the
exponential decay in the time spectrum. One quarter of the data is shifted forward in time
by half a g-2 cycle, another quarter of the data is shifted backward in time by half a g-2
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Figure 4.16: In the ratio method, one quarter of the data is shifted back in time by half a
g-2 period, another quarter of the data is shifted forward in time by half a g-2 period, and
half of the data is unshifted. At the g-2 zero crossings, the difference between the sum of
the shifted data and the unshifted data is at a minimum (nearly zero), whereas at the peak
(or trough) of the g-2 oscillation, the difference is maximal (' A).

cycle, and the remaining one-half of the data remains untouched. We define

U(t) = u+(t) + u−(t), V (t) = v1(t) + v2(t) (4.13)

where
u+ = N(t+ Ta/2), u− = N(t− Ta/2) and v1,2 = N(t) (4.14)

and Ta is the assumed g-2 frequency.

As shown in Fig. 4.16, the difference U(t) − V (t) is nearly zero at a g-2 zero crossing,
whereas it is maximal at the peak or trough of the g-2 cycle. However, although one g-2
period later the difference is still zero at the zero crossing, the exponential decay in the
number of counts causes the difference to be slightly smaller at the peak or trough than
the earlier difference. Therefore the difference is an exponentially decaying cosine, shown
in the top left plot of Fig. 4.17. Note that the sum of all data, U(t) + V (t), is simply
an exponential decay, shown in the bottom left plot of Fig. 4.17. Taking the ratio of the
difference over the sum, the five-parameter function

N5(t) = N0e
−t/τ (1 +A cos(ωat+ φ) (4.15)
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Figure 4.17: The difference of the sum of the time-shifted data and the unshifted data
results in an exponentially decaying cosine. The sum of all time-shifted data and unshifted
data results in a exponential of the same lifetime. The ratio of the difference (D) over the
sum (S) is simply a cosine.

is reduced to the three-parameter function

r(t) =
U(t) − V (t)

U(t) + U(t)
= A cos(ωat+ φ) + C1 (4.16)

where

C1 =
1

16

(

Ta

τ

)2

' 2.87 × 10−4 (4.17)

A full derivation of the three-parameter ratio function is found in Appendix B.1. Fig. 4.18(a)
shows the time spectrum of all decay electrons used in this analysis, in 150 ns-wide bins.
The number of counts is plotted on a log scale. In order to make sure the g-2 oscillations
are visible on this scale, the data are wrapped around the time axis every 90 µs. The
corresponding ratio spectrum of the same data is shown in Fig. 4.18(b).

In practice, one must know the spin precession frequency to within ∼ 10 ppm[66] in order
to make a ratio spectrum with sufficiently negligible higher order terms (see Appendix B.1).
We have verified that the value of Ta = 2π/ωa obtained from late-time fits to the data agree
within errors of the value used in this analysis.

The ratio method requires four time spectra to be built. For each pulse, a random
integer between 0 and 3 is generated from a flat distribution obtained using the RANLUX

routine at luxury level 4. The four numbers 0, 1, 2, and 3 determine into which of the four
histograms the pulse time gets inserted: if it is 0, the pulse time is shifted by +1/2 the g-2
period and is inserted into the u+ histogram, if it is 1, the pulse time is shifted by -1/2 the
g-2 period and is inserted into the u− histogram, and if it is either 2 or 3, the pulse time
is not shifted and is inserted to either the v1 or the v2 histogram respectively. The pileup
subtracted u+, u−, v1, and v2 time spectra are later summed over runs, and the ratio time
spectrum is constructed using Eq. 4.16.
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Figure 4.18: Original N(t) spectrum and ratio function, both produced using all 2001 data.
Note that N(t) is plotted on a log vertical scale. The horizontal axis wraps around every
90 µs, starting from 33 µs after injection.

There are several advantages in using the ratio to obtain ωa. The most obvious is the
reduction in the number of fit parameters, from five to three. This is related to the most
powerful advantage of the ratio method, the decreased sensitivity of the fit χ2/d.o.f. and
ωa to changes in number of counts over time scales greater than the g-2 period (∼ 4.4 µs).
Therefore, some background terms, such as muon losses, may be neglected when fitting the
data.

To see this, we have simulated a single time spectrum of 3.6 × 109 decay electrons
according to the five-parameter function, but with muon losses included. The variable R is
defined as R = 1− ωa/ωa0

, where in the simulation ωa0
= 2π × 0.229067 rad/s and R = 15

ppm. The other variables in the simulation were τ = 64.4 µs, A = 0.4136, and φ = 1.5
rad. The muon loss time spectrum used is an exponential with a lifetime of 25 µs and an
amplitude of 1% at t=0. The data are binned in 150 ns steps. The ratio is constructed
from the same data. The time spectrum is then fit to the simple five-parameter function,
and the ratio is fit to the simple three-parameter function. Fig. 4.19 shows the values of the
individual parameters and χ2/d.o.f. as a function of fit start time. The dashed lines are the
correlated error bands with respect to the first fit result; statistically, for an acceptable fit
function, one expects ∼ 67% of the fit results to fall within these lines. From the very poor
fit χ2/d.o.f. at early times and from the time dependence of the fit parameters, it is clear
that the five-parameter fit function fails to describe the decay electron time spectrum. On
the other hand, the results from the three-parameter fit to the ratio seem unperturbed by
muon losses.
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(b) Three-parameter fit results to the ratio.

Figure 4.19: Fit results to simulated data. The simulated spectrum is derived from a five-
parameter function, but with muon losses included. The input values of the simulated time
spectrum are τ = 64.4 µs, R = 15 ppm, A = 0.4136 and φ = 1.5 rad. Both the decay
electron time spectrum and the ratio are fit to their corresponding functions, and the fitted
values of the parameters are plotted as a function of fit start time. The dashed lines are
the correlated error bands.
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Figure 4.20: Schematic of muon decay inside the storage region.

Although the ratio fit is much less sensitive than a simple fit to slowly varying back-
grounds, it is still sensitive to changes in the asymmetry and phase. Therefore, if lost muons
have a different average asymmetry or phase than the rest of the stored muon population,
a systematic shift in the fitted value of ωa will be observed. Furthermore, effects such as
energy scale changes, pileup, and CBO, which all affect N0, A and φ, must still be taken into
account with the ratio method. As previously discussed, energy scale changes and pileup
are both corrected for before fitting the data. Therefore this analysis attempts to account
properly for all CBO effects by modifying the ratio fit function.

4.3 Fits to the Data

4.3.1 CBO Parameters

CBO Frequency and Lifetime

The acceptance of the electron detectors depends on the location of the muon decay vertex
in the ring, as well as the energy of the decay electron, as demonstrated in Fig. 4.20. This
dependence arises from geometric considerations: for example, low-energy electrons emitted
at smaller radii are more likely to hit a detector than low-energy electrons emitted at larger
radii. Furthermore, because electrons born at larger radii take longer to reach a detector
than electrons born at smaller radii, there is a difference in the observed time of decay,
which appears as a difference in phase. From the point of view of a single detector, the
muon beam is oscillating in and out radially at the CBO frequency, and the average energy
of the decay electrons oscillates at the same frequency. Since N0, A and φ are all energy-
threshold dependent, these terms will also oscillate at the CBO frequency. We therefore
find that the decay electron counting rate is modified from

N(t) = N0e
−t/τµ(1 +A cos(ωat+ φ)) (4.18)

to

N(t) = N0(1 +ANcbo
(t))e−t/τµ(1 +A(1 +AAcbo

(t)) cos(ωat+ φ+Aφcbo
(t))) (4.19)

where the functions ANcbo
(t), AAcbo

(t) and Aφcbo
(t) are of the form

Amcbo
= Am(t) cos(ωcbot+ φm) (4.20)
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Low n-value Data Set

main resid. lower cbo upper cbo
cbo g-2 sideband sideband

freq. (kHz) 419.06 229.75 188.46 649.74

sigma (kHz) 7.49 6.73 8.36 9.93

amp. (a.u.) 22293. 12224. 6029.7 4739.6

High n-value Data Set

main g-2 lower cbo upper cbo
cbo sideband sideband

freq. (kHz) 490.62 230.25 260.87 719.76

sigma (kHz) 5.94 7.43 6.22 7.69

amp. (a.u.) 25861. 8355.1 6058.6 4512.0

Table 4.1: Results of Gaussian fits to the four main peaks in the FFT spectrum of residuals
to fits at late times.

where m = N,A, or φ and Am(t) is a monotonically decreasing function. Although vertical
oscillations have a similar effect, simulation studies and data analysis have shown that
the radial oscillations dominate this background. This is primarily because the vertical
oscillations die out very quickly, with lifetimes of ∼ 20 µs.

The CBO envelope, Af (t), is well described by an exponential. Assuming Ncbo, Acbo

and φcbo all have the same functional form, then there are 11 free parameters for the ratio
method: three from the original ratio equation, three CBO amplitudes, three CBO phases,
the CBO lifetime, and the CBO frequency. Note that there is no N0 or τ when fitting a
ratio. However, we can reduce the number of parameters by obtaining the CBO frequency
and lifetime by other means.

To obtain the CBO frequency, we use the time spectrum of the residuals of a fit. A
residual is the differences between the data and the fit function. The decay electron time
spectrum is fit to the five parameter function at ∼ 180 µs after injection. The residuals are
then calculated for all times: D(ti) = N(ti) − Ni. This approach subtracts out the large
g-2 signal and allows one to see the small backgrounds at early times after injection.

Figs. 4.21-4.22 show the results of Fast Fourier Transforms (FFTs) of the residuals of
late-time fits for both the low-n and high-n data set. The top plots show the frequency
range of 100-1000 kHz, in which we see quite clearly four peaks: the main CBO peak, the
residual g-2 signal at ' 229.1 kHz, and the “lower” and “upper” CBO sidebands (fcbo − fa

and fcbo + fa).

Gaussian fits around the peaks were performed, the results of which are summarized in
Table 4.1 (the results are also printed in the upper right corners of each plot). The top
plots show the range of frequencies from 100 to 1000 kHz, and the fit results of the CBO
peak are printed in the corner. The bottom plots show narrower frequency ranges to zoom
in on the sideband frequencies, the left plot showing the lower CBO sideband and the right
plot showing the upper CBO sideband.

We may further reduce the number of free parameters in our fit function by determining
the CBO lifetime by again using the average energy vs. time. For this study we use use
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Figure 4.21: FFT of the residuals of a five parameter fit of the low-n electron decay time
spectrum at 180 µs after injection. The fCBO, residual fa, and fCBO ± fa peaks were fit to
a Gaussian, the results of which are shown in Table 4.1.
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Figure 4.22: FFT of the residuals of a five parameter fit of the high-n electron decay time
spectrum at 180 µs after injection. The fCBO, residual fa, and fCBO ± fa peaks were fit to
a Gaussian, the results of which are shown in Table 4.1.
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(b) High n-value data set.

Figure 4.23: Average energy vs. time where only decay electrons falling within the same g-2
phase are considered. The acceptance effect of CBO is very apparent, and the histograms
are fit to Eq. 4.21 in order to extract the frequency and lifetime of the CBO.

time bin widths of Ta/8 µs instead of averaging the energy over one g-2 period. The energy
distribution varies a great deal over a g-2 period, since at the peak of the g-2 period there
are many more high-energy decay electrons than at the trough of the period. With no other
energy-dependent backgrounds, the energy distribution should be the same every eighth
time bin (always at the same g-2 phase). However, CBO acceptance effects are energy-
dependent, and have a measurable effect on the average energy. A few examples of the
CBO acceptance effect on the average energy are shown in Fig. 4.23, for detectors 11 and
19, for both data sets.

The oscillations are quite clear, and in fact are present in nearly all eight g-2 phases,
not just those near the g-2 peak. Therefore the data for detectors 9-24 (except 20) were fit
(in the range of ∼ 30 to ∼ 200 µs) to the function

〈ETa/8〉(t) = Ae−t/τc cos(ωt+ φ) + c1t+ c0 (4.21)

where A = p1, τc = p2, ω = ωcbo−ωa = p3, φ = p4, c1 = p5 and c0 = p6. We have assumed
an exponential decay as the CBO envelope, and the c1 and c0 parameters of the fit function
are present in order to account for actual gain. For detectors 9-24, a linear function is
sufficient to describe the changes in average energy. Since there are eight g-2 phases and
15 detectors used in this study, a total of 120 fits were made. Cuts on the fit results were
applied (reasonable values of fit χ2/d.o.f. and reasonable values of fit parameters and errors
on the fit parameters), and typically about 2/3 of the fits were acceptable.
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Figure 4.24: Distributions of CBO parameters obtained from fits to 〈ETa/8〉 vs. t to Eq. 4.21.
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Figure 4.25: Effect of the kicker and quadrupole plates: electrons born at larger radii pass
through less of the kicker and quadrupole plate material (Al) than electrons born at smaller
radii.

The distributions of the fitted CBO lifetimes and frequencies and fit χ2/d.o.f. of the
acceptable fits are shown in Fig. 4.24. The mean CBO frequencies, f = |fc − 2fa|, are
found to be fcbo = 418.7 ± 0.2 and 490.3 ± 0.2 kHz for the low and high n-value data sets
respectively. These agree to within 2 σ with the CBO frequencies found above. The means
of the distributions of the fit χ2 also agree with the expected value of 1.0 to within 2 σ.
Finally, the mean CBO lifetimes, which are fixed to their central values in the final ratio
fits are 92.1 ± 5.2 and 130.1 ± 5.5 µs for the low and high n-value data sets respectively.

CBO vs. Detector

There are two important features of the CBO spectra in the electromagnetic calorimeters
that have important repercussions:

• The observed phase of the CBO oscillations varies from 0 to 2π around the storage
ring.

• Some detectors are more sensitive to CBO oscillations than others.

The first point is simply the result of observing the electron decay spectrum at different
locations in the ring. This implies that adding data from all detectors together would cancel
the effect of CBO. However, this would only work if all detectors had the same acceptance.
Unfortunately, this is not the case.

Different detector have different acceptances because of objects, typically aluminum
plates, inside the storage ring just upstream of the detector. For example, a “shadow” of
the kicker and quadrupole plates is observed in the detectors located nearby. When passing
through the plates, the decay electrons shower and lose energy. Since the beam is moving
in and out radially, electrons born at larger radii pass through less aluminum than electrons
born at smaller radii (see Fig. 4.25), resulting in a time-dependent distortion of the observed
energy spectrum. We therefore expect to see larger CBO effects in those detectors near the
muon kickers and near the electrostatic quadrupole regions. In fact, since the kicker plates
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are thicker and taller than the quadrupole plates, the effect is even larger for those detectors
near the kicker plates.

4.3.2 Fit Procedure

To fit the ratio time spectra, the χ2 of the ratio function,

χ2 =
∑

i

(r(ti) − ri)
2

σ2
i

(4.22)

is minimized. ti is the central value of the time bin, r(ti) is the calculated value of the ratio
at time ti, ri is the measured value of the ratio in the ith bin, and σi is the uncertainty on
ri. Note that since we have taken a ratio, σi is not the

√
Ni that one would typically use in

a fit to the measured number of counts. Appendix B.4 gives a full derivation of σi, which
is of the form

σ2
i ' (1 − r2i )

Ui + Vi
(4.23)

where Ui + Vi is the sum of the shifted and unshifted data at time ti.

The χ2 is minimized using the CERNLIB package MINUIT. MINUIT is designed to find the
minimum value of a multi-parameter function [92], and accepts a variety of commands to
specify the fit procedure. In this analysis, the following commands are given to MINUIT:

(1) MIGRAD

(2) IMPROVE

(3) MINOS

(4) MIGRAD

The command MIGRAD minimizes the function with “the most efficient and complete single
method” [92]. IMPROVE searches “for additional distinct local minima” [92], and MINOS

performs a very reliable error analysis calculation which takes “account of non-linearities in
the problem as well as parameter correlations . . . ” [92]. We use the information from the
previous calls in the last call to MIGRAD to obtain the final values of the free parameters in
the fit, although this has little, if any, effect on the final fit values.

4.3.3 Fit Results

The data from the 2001 run were fit to various ratio functions, ranging from the simple
three parameter function to a nine parameter function. The following sections discuss the
results from four fit functions, each function an extension of the previous one. We note
that data from detector 20 are never used. Also, data from the 23 detectors were summed
together and fit; for ease of reference, the summed data is referred to as detector 25. It is
also useful to compare fit results of data summed over different halves of the full detector
set. Therefore, detector 26 represents the summed data from detectors 1-12, and detector
27 represents the summed data from detectors 13-24, detector 20 excluded.
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Low−n Data Set, Three Par. Fit
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(a) Low-n data set.

High−n Data Set, Three Par. Fit
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(b) High-n data set.

Figure 4.26: Top: R vs. Detector for the three parameter fit. Bottom: Fit χ2/d.o.f. for each
detector for the three parameter fit. All points are taken at t=32.5 µs.

Three Parameter Fit

The first function the data were fit to was the simple three parameter ratio function,

r3(t) = A cos(2πfa(1 − (R −Roff ) × 10−6)t+ φa) − C1 (4.24)

where the bold parameters are free in the fit, fa = 229.1 kHz and C1 = 2.874×10−4. Roff is
an offset equal to -7.80 ppm, originally known only to the ωa analyzers and used to ensure a
blind analysis of aµ (the ωp analyzers used a different offset known only to themselves until
the final value of aµ was calculated). Fit values of R and fit χ2/d.o.f. at a fit start time
of 32.5 µs are plotted as a function of detector number in Fig. 4.26. Results for the low-n
data set are on the left, the high-n results are on the right. The first 24 detectors in the R
vs. detector plot are fit to a constant, which gives the average R value over the detectors.
The values for detector 20 are ignored in the fit. The resulting average R values, for the
low- and high-n data sets respectively, are 107.6 ± 0.94 ppm and 109.2 ± 1.17 ppm, where
the error is obtained from the fit to a constant.

The fit start time dependence of R, A and fit χ2/d.o.f. is shown in Fig. 4.272. The
curved lines drawn on some plots are the correlated difference error bands. The top plots of
Fig. 4.27 shows R vs. as a function of fit start time for the detectors 25, 26 and 27. For the
low-n data set, we see that from about 30 to 100 µs, the R-values for both halves of the ring

2Since φa is highly correlated to R, its time dependence tracks almost exactly with R’s; we learn little
from plots of φa vs. fit start time.
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Low−n Data Set, Three Par. Fit
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(a) Low-n data set.

High−n Data Set, Three Par. Fit
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(b) High-n data set.

Figure 4.27: From top to bottom: 1. R vs. fit start time for the three parameter fit for
different combinations of detectors: 1-12 (red circles), 13-24 (blue triangles), and 1-24 (black
squares). 2. Difference of R vs. fit start time plots between first and second halves of the
ring. 3. Asymmetry vs. fit start time for detector 25. 4. χ2/d.o.f. vs. fit start time for
different combinations of detectors.
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track quite well. The second plot from the top shows the difference between the R vs. fit
start time plots for detectors 26 and 27. Although the fit R-values of the two halves of the
ring do seem to diverge around 100 µs, they do not diverge by more than 2 σ. Furthermore,
studies have shown that they later converge around 200 µs. Therefore, this is most likely a
statistical effect.

However, for the high-n data set, there is quite a large difference (∼ 3± 2 ppm at ∼ 33
µs) in the R-values for the two halves of the ring at all fit start times. By fitting various
subsets of the high-n data set and looking at the differences between the fit R values of
the first and second halves of the ring, Peter Shagin has demonstrated that this 3 ppm
difference is very likely a statistical effect.

We also see oscillations of roughly 30 kHz in the differences of the half-ring R vs. fit
start time plots, in both data sets. These oscillations, often referred to as the “half-ring
effect”, are related to CBO and the frequency is the difference fCBO − 2fa.

The plots second from the bottom in Fig. 4.27 show the fit start time dependency of
the asymmetry for detector 25. The asymmetry appears to drift to a slightly larger value
at late start times, which is possibly an effect of low-energy pileup. At early times, the
low-energy pileup has a tendency to lower the average asymmetry (low-energy pulses have
a small, negative asymmetry), and at later times the amount of pileup diminishes.

The bottom plots in Fig. 4.27 show the χ2/d.o.f. for detectors 25-27. We note that for
Gaussian statistics and N degrees of freedom, χ2/d.o.f. = 1 ±

√

2/N. Since the fits have
approximately 4400 degrees of freedom (time bins), the χ2/d.o.f. should be 1 ± 0.024. The
values of the fit χ2/d.o.f. are therefore acceptable.

Five Parameter Ratio Fit

We now extend the fit function to include the main CBO background term, the modulation
of N : Ncbo(t). Our procedure parallels the CBO extensions to the functions used to fit the
decay positron time spectra from the 1999 data set. Although one could use a parameter-
ization for the ratio as described in Appendix B.3, we found that, in practice, fits to the
data converged better by calculating the explicit ratio function:

r5(t) =
2f0(t) − f+(t) − f−(t)

2f0(t) + f+(t) + f−(t)
(4.25)

where

f0(t) = (1 + e−t/τCBOANCBO
cos(ωCBOt+ φCBO))(1 + A cos(ωat+ φa)) (4.26)

and

f±(t) = (1 + e−t′/τCBOANCBO
cos(ωCBOt

′ + φCBO))e∓T/(2τ)(1 + A cos(ωat
′ + φa)) (4.27)

where t′ is the shifted time
t′ = t± T/2, (4.28)

ωa = 2πfa(1 − (R −Roff ) × 10−6), (4.29)



107

Low−n Data Set, Five Par. Fit
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(a) Low-n data set.

High−n Data Set, Five Par. Fit
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(b) High-n data set.

Figure 4.28: Top: R vs. Detector for the five parameter fit. Bottom: Fit χ2/d.o.f. for each
detector for the five parameter fit. All points are taken at t=32.5 µs.

τ is the dilated muon lifetime fixed to 64.4 µs, ANCBO
is the amplitude of the CBO effect

on N , and φCBO is the CBO phase. Note that the N0 and exp(−t/τ) terms have been
divided out already. The CBO frequencies and lifetimes were fixed to the values determined
in Section 4.3.1: 419.1 kHz and 92.1 µs for the low-n data set and 490.6 kHz and 130.1 µs
for the high-n data set.

Fig. 4.28 shows R vs. detector for the two data sets. The fitted values for average R
at 32.5 µs are very consistent with those obtained from the three parameter fit. In fact,
comparing all fit results in Fig. 4.29 of the five parameter fits to those of the three parameter
fits (Fig. 4.27, we see no significant difference between the two.

CBO amplitudes and phases vs. detector are shown in Fig. 4.30, where the data points
are taken at a fit start time of 32.5 µs. As expected, the CBO phase varies almost linearly as
a function of detector number, covering a range of 2π radians around the ring. Deviations
from a straight line arise from statistical fluctuations and differences in detector acceptance.

As discussed in Section 4.3.1, it is expected that the observed CBO amplitude be larger
for detectors near the kicker modules (detectors 7, 8, and 9). This has been verified by
direct fits of the decay electron time spectrum [93] as well as from simulation. However, in
fits to the ratio we see only a slightly larger CBO amplitude in some of the detectors near
the kickers; in fact, one could well argue that most of the fit values agree within errors.
The reason that larger CBO amplitudes are not observed in the ratio fits for the detectors
near the kicker is that the ratio is less sensitive to the main CBO term (see Appendix B.3).
Indeed, it is for this reason that the half-ring oscillations are still present after fitting the
ratio with the five parameter function. We therefore conclude that the function used to fit
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Low−n Data Set, Five Par. Fit
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(a) Low-n data set.

High−n Data Set, Five Par. Fit
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Figure 4.29: From top to bottom: 1. R vs. fit start time for the five parameter fit for
different combinations of detectors: 1-12 (red circles), 13-24 (blue triangles), and 1-24
(black squares). 2. Difference of R vs. fit start time plots between first and second halves
of the ring. 3. Asymmetry vs. fit start time for detector 25. 4. χ2/d.o.f. vs. fit start time
for different combinations of detectors.
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AN_c vs. Det.

Low−n Data Set, Five Par. Fit
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AN_c vs. Det.

High−n Data Set, Five Par. Fit
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(b) High-n data set.

Figure 4.30: CBO amplitude (top) and phase (bottom) vs. detector for the five parameter
ratio fit.

the data is still inadequate.

Seven Parameter Ratio Fit

We once gain extend our fit function to include another CBO term, in this case, Acbo(t).
The data were fit to the function:

r7(t) =
2f0(t) − f+(t) − f−(t)

2f0(t) + f+(t) + f−(t)
(4.30)

where
f0(t) = (1 + ANCBO

(t))(1 + A(1 + AACBO
(t)) cos(ωat+ φa)) (4.31)

and

f±(t) = (1 + ANCBO
(t′))e∓T/(2τ)(1 + A(1 + AACBO

(t′)) cos(ωat
′ + φa)) (4.32)

where t′ is the shifted time
t′ = t± T/2, (4.33)

ωa = 2πfa(1 − (R −Roff ) × 10−6), (4.34)

as before, τ is the dilated muon lifetime fixed to 64.4 µs,

ANCBO
(t) = ANCBO

e−t/τCBO cos(ωCBOt+ φNCBO
) (4.35)
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Low−n Data Set, Seven Par. Fit
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(a) Low-n data set.

High−n Data Set, Seven Par. Fit
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Figure 4.31: R vs. Detector for the seven parameter ratio fit. Left: Low-n data set. Right:
High-n data set. All points are taken at t=32.5 µs.

is the amplitude of the CBO effect on N , and

AACBO
(t) = AACBO

e−t/τCBO cos(ωCBOt+ φACBO
) (4.36)

is the amplitude of the CBO effect on A. The CBO frequencies and lifetimes are fixed to
the same values used in the five-parameter ratio fit.

The fit results for R, χ2, NCBO and ACBO are shown in Figs. 4.31-4.34. We see a dramatic
improvement in the fits with regards to CBO compared to the three and five parameter fits.
The amplitude of the half-ring effect is greatly diminished (see Fig. 4.31). And again,
as expected, φNCBO

and φACBO
both traverse 2π radians around the circumference of the

storage ring.

Nine Parameter Ratio Fit

Although the seven-parameter ratio function eliminates the half-ring effect, we expect CBO
to influence the g-2 phase, as discussed above. To include the CBO modulation of the g-2
phase, we use a nine parameter fit function:

r9(t) =
2f0(t) − f+(t) − f−(t)

2f0(t) + f+(t) + f−(t)
(4.37)

where

f0(t) = (1 + ANCBO
(t))(1 + A(1 + AACBO

(t)) cos(ωat+ φa(1 + AφCBO
(t)))) (4.38)
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Low−n Data Set, Seven Par. Fit
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Figure 4.32: From top to bottom: 1. R vs. fit start time for the seven parameter fit for
different combinations of detectors: 1-12 (red circles), 13-24 (blue triangles), and 1-24 (black
squares). 2. Difference of R vs. fit start time plots between first and second halves of the
ring. 3. Asymmetry vs. fit start time for detector 25. 4. χ2/d.o.f. vs. fit start time for
different combinations of detectors.
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AN_c vs. Det.
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(b) High-n data set.

Figure 4.33: NCBO amplitudes and phases vs. Detector for the seven parameter ratio fit.
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Figure 4.34: ACBO term amplitudes and phases vs. Detector for the seven parameter ratio
fit.
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Low−n Data Set, Nine Par. Fit
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Figure 4.35: R vs. Detector for the nine parameter fit. All points are taken at t=32.5 µs.

and

f±(t) = (1+ANCBO
(t′))e∓T/(2τ)(1+A(1+AACBO

(t′)) cos(ωat
′+φa(1+AφCBO

(t′))) (4.39)

where t′ is the shifted time
t′ = t± T/2, (4.40)

ωa = 2πfa(1 − (R −Roff ) × 10−6), (4.41)

as before, τ is the dilated muon lifetime fixed to 64.4 µs,

ANCBO
(t) = ANCBO

e−t/τCBO cos(ωCBOt+ φNCBO
) (4.42)

is the CBO effect on N ,

AACBO
(t) = AACBO

e−t/τCBO cos(ωCBOt+ φACBO
) (4.43)

is the CBO effect on A, and

AφCBO
(t) = AφCBO

e−t/τCBO cos(ωCBOt+ φφCBO
) (4.44)

is the CBO effect on φa. Once again, the CBO frequencies and lifetimes are fixed to the
same values used in the five- and seven-parameter ratio fits.

The results of the fits are shown in Figs. 4.35-4.39, and are very compatible with the
fit results obtained from the seven parameter ratio function. We find that the g-2 phase
is modulated by ∼ 1.4 mrad, which corresponds to a modulation in detection time of ∼ 1
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Low−n Data Set, Nine Par. Fit
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High−n Data Set, Nine Par. Fit
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Figure 4.36: From top to bottom: 1. R vs. fit start time for the nine parameter fit for
different combinations of detectors: 1-12 (red circles), 13-24 (blue triangles), and 1-24
(black squares). 2. Difference of R vs. fit start time plots between first and second halves
of the ring. 3. Asymmetry vs. fit start time for detector 25. 4. χ2/d.o.f. vs. fit start time
for different combinations of detectors.
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(a) Low-n data set.

AN_c vs. Det.

High−n Data Set, Nine Par. Fit

Det.

N
_c

bo
 A

m
p.

N_c Phase vs. Det. Det.

N
_c

bo
 P

ha
se

 (
ra

d)

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

5 10 15 20 25

−6

−4

−2

0

2

4

6

5 10 15 20 25

(b) High-n data set.

Figure 4.37: NCBO term amplitudes and phases vs. Detector for the nine parameter fit. All
points are taken at t=32.5 µs.
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(a) Low-n data set.
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(b) High-n data set.

Figure 4.38: ACBO term amplitudes and phases vs. Detector for the nine parameter fit. All
points are taken at t=32.5 µs.
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Figure 4.39: φCBO term amplitudes and phases vs. Detector for the nine parameter fit. All
points are taken at t=32.5 µs.

ns. Simulations have shown that the expected modulation from differences in drift time
alone are of the order of a few hundred picoseconds, accounting for only a fraction of the
observed modulation in the g-2 phase. The remaining contribution to the modulation arises
from acceptance effects; the average phase depends on energy, and CBO affects the average
energy.

Fit Results with Different Fit Start Times

The detectors closest to the injection point see the largest neutron background and therefore
the PMTs of these detectors are gated on almost 25 µs later than the PMTs of the detectors
on the opposite side of the ring. If one wishes to combine the time spectra from all of the
detectors into one time spectrum (eg: that of detector 25), then the earliest one may begin
to fit the data is ∼ 32 µs after injection. One may reduce the statistical uncertainty if
data from the detectors are fit separately using individual, earlier start times. At the end,
one simply takes the weighted average value of R from the individual detector fit results.
This xsrequires that CBO is properly accounted for, and only a seven or nine parameter fit
function is appropriate for this approach.

The individual fit start times (tf ) were determined according to the following criteria:

• χ2/d.o.f. is ’acceptable’

• fit parameters are stable

• tf > 22 µs (after scraping)
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Fit Start Time

Det. 1,8 2 3,6,7 4,5 9-24

Time (µs) 27.4 25.3 29.6 34.0 23.0

Table 4.2: Fit start times for the individual detectors. All fit start times are after scraping
and at (or very close to) g-2 zero crossings.

R vs. Det., Diff. Start Times, Low−n Data Set
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(a) Three and five parameter ratio fits.
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(b) Seven and nine parameter ratio fits.

Figure 4.40: Fit result comparison of R vs. Det. for the low-n data set using different fit
start times for each detector.

• tf is a g-2 zero crossing

“Acceptable” χ2/d.o.f. is defined as the time at which the χ2/d.o.f. in the fit-time scan drops
below 2.5 σ from 1 (therefore, |χ2 − 1| < 0.05). In the case of consistently high χ2/d.o.f.
(greater than 2.5 σ from 1) vs. fit start time, an average χ2/d.o.f. is determined from fit
results between 90 and 150 µs, and “acceptable” χ2/d.o.f. is defined as |(χ2−χ2

late)/χ
2
late| <

0.05. The reason for choosing a g-2 zero crossing (where the cosine term of the time spectrum
crosses zero) is because most phase-pulling effects, such as pileup and energy-scale changes,
are minimized at these times. The fit start times of the detectors are listed in Table 4.2.

Figs. 4.40 and 4.41 show R vs. detector with different fit start times for all four fit
functions. The average values of R for each fit is obtained by fitting a constant to the 24
detectors. Note that although the fit values of R vary only slightly vs. fit function, the fit
χ2/d.o.f. improves significantly as more and more CBO effects are fit for, going from the
three parameter ratio function to the nine parameter ratio function.
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R vs. Det., Diff. Start Times, High−n Data Set
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(a) Three and five parameter ratio fits.
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(b) Seven and nine parameter ratio fits.

Figure 4.41: Fit result comparison of R vs. Det. for the high-n data set using different fit
start times for each detector.

Summary of Fit Results

Table 4.3 summarizes the various fit parameters and constants used in each fit function
describe above. A “free” parameter refers to one that is determined from the fit, and an
empty entry means “not applicable”. Since there are a great number of fit results to consider
(26 detectors ×n−parameters for an n−parameter fit), the fit values for R and χ2/d.o.f.
are summarized in Table 4.4. These tables compare R-values obtained from the average
over all 23 detector R-values at 32.5 µs, detector 25 at 32.5 µs, and the average over all 23
detector R-values with the different start times given in Table 4.2.

The two R-values obtained from fits at 32.5 µs (the average over all detectors and from
the fit to the sum of all detectors) agree very well, within 0.2 ppm. However, there is a
larger difference between the average R obtained from fits to data from detectors at the
same fit time (32.5 µs) and fits using different individual start times. For the low-n data
set, the difference is ∼ 0.4 ppm, and for the high-n data set, the difference is ∼ 0.8 ppm.
The average start time of the fits to data with different start times is ' 25.5 µs, whereas
the fits to data with the same start time began at 32.5 µs. Taking into account the extra
7 µs of data, the allowed deviation in R is ∼ 30% of the statistical uncertainty of the later
fit. Therefore the differences of 0.4 ppm and 0.8 ppm represent a deviation in R by ∼ 1.3
σ and ∼ 2.5 σ. While the latter difference is worrisome, as will be shown, no systematic
effects were found that could account for the difference. Therefore, we conclude that the
difference is statistical in nature.

An aggressive approach of obtaining the final R-value from fits to data from individual
detectors at different start times is chosen in this analysis. This reduces the statistical
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Fit Parameter Status

Fit 3 Par. 5 Par. 7 Par. 9 Par.

A Free Free Free Free

R Free Free Free Free

φ Free Free Free Free

constant/ 2.874×10−4 64.4 64.4 64.4
τµ µs µs µs

ANCBO
- Free Free Free

φNCBO
- Free Free Free

AACBO
- - Free Free

φACBO
- - Free Free

AφCBO
- - - Free

φφCBO
- - - Free

fCBO (kHz) - 419.1 419.1 419.1
low-n

τCBO (µs) - 92.1 92.1 92.1
low-n

fCBO (kHz) - 490.6 490.6 490.6
high-n

τCBO (µs) - 130.1 130.1 130.1
high-n

Table 4.3: Summary of fit parameter status in each ratio fit. “Free” means that the pa-
rameter is determined from the fit, number/values in an entry means that the fit parameter
was held fixed to that value in the fit, and an empty entry means not applicable.

uncertainty on ωa by at least 6%. The question remains as to which function to use in the
final analysis of the data. Clearly either the seven- or the nine-parameter ratio function
must be used in order to account effectively for CBO effects. The decision to use the
nine-parameter ratio function is based on three key points:

• The fit to a constant of R vs. detector obtained from the nine parameter ratio fits
has a better χ2/d.o.f. than that obtained from all other ratio fits (see Figs. 4.40 and
4.41).

• The nine parameter ratio function accounts for all known CBO effects.

• There are no strong correlations between R and the other 8 fit parameters in the
nine-parameter ratio function.

The second point is clear: there is a physical model which predicts the existence of the
Ncbo, Acbo and φcbo terms. Furthermore, the existence of these terms have been verified
by both simulation and by fits to data. It is clear that the seven and nine parameter ratio
fits effectively eliminate the half-ring effect, as demonstrated in Fig. 4.42. Oscillations at
the frequency fCBO − 2fa, or ∼ 30 kHz, are clearly seen in the three and five parameter fits
whereas they are not as apparent in the seven and nine parameter. Another comparison of
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Three Par. Fit

dR vs. Fit Start Time, Low−n Data Set
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(b) High-n data set.

Figure 4.42: Difference between first-half and second-half of the ring of R vs. fit time for
various fit functions.
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(b) High-n data set.

Figure 4.43: Difference between various fit functions of R vs. fit time plots of detector 27.
Rn corresponds to the n-parameter ratio function.
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Comparison of Fit R Values - Low-n Data Set

Fit 3 Par. 5 Par. 7 Par. 9 Par.

〈R〉(tf = 32.5 µs) 107.6 107.5 107.5 107.6

(constant fit to R vs. Det.) ± 0.94 ± .97 ± 0.97 ±0.96

χ2/d.o.f. of 0.833 0.828 0.775 0.796

constant fit to R vs. Det.

Mean χ2/d.o.f. 1.011 1.010 1.010 1.010

over 23 detectors

RMS(χ2/d.o.f.) 0.039 0.038 0.039 0.039

R @ 32.5 µs 107.4 107.6 107.3 107.4

for Det. 25 ±0.96 ± 0.95 ± 0.97 ± 0.97

χ2/d.o.f. 1.006 0.995 1.003 1.003

〈R〉(diff. tf ’s) 107.9 107.9 108.1 108.0

(constant fit to R vs. Det.) ±0.91 ± 0.91 ± 0.91 ± 0.91

χ2/d.o.f. of 1.113 1.088 1.070 1.042

constant fit to R vs. Det.

Mean χ2/d.o.f. 1.016 1.015 1.014 1.014

over 23 detectors

RMS(χ2/d.o.f.) 0.039 0.039 0.039 0.039

Comparison of Fit R Values - High-n Data Set

Fit 3 Par. 5 Par. 7 Par. 9 Par.

〈R〉(tf = 32.5 µs) 109.2 109.0 109.2 109.2

(constant fit to R vs. Det.) ±1.17 ± 1.16 ± 1.16 ± 1.17

χ2/d.o.f. of 1.584 1.597 1.525 1.492

constant fit to R vs. Det.

Mean χ2/d.o.f. 1.013 1.012 1.011 1.010

over 23 detectors

RMS(χ2/d.o.f.) 0.025 0.024 0.024 0.024

R @ 32.5 µs 109.2 109.2 109.3 109.3

for Det. 25 ± 1.16 ± 1.13 ± 1.16 ± 1.17

χ2/d.o.f. 1.023 1.020 1.020 1.021

〈R〉(diff. tf ’s) 107.8 108.0 108.3 108.4

(constant fit to R vs. Det. ±1.07 ± 1.09 ± 1.10 ± 1.10

χ2/d.o.f. of 2.036 1.996 1.806 1.631

constant fit to R vs. Det.

Mean χ2/d.o.f. 1.029 1.028 1.026 1.026

over 23 detectors

RMS(χ2/d.o.f.) 0.026 0.025 0.025 0.025

Table 4.4: Brief summary of the current results from the various functions fit to the two data
sets. The χ2/d.o.f. is from the result of fitting R vs. Det. to a constant, whereas the mean and
RMS(χ2/d.o.f.) are taken from the distribution of fit χ2’s from each detector.
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Correlation Matrix for Nine Parameter Fit, Low-n

Par. A R φa ANCBO
φNCBO

AACBO
φACBO

AφCBO
φφCBO

A 1.000 -0.005 -0.007 0.000 0.013 0.049 -0.054 -0.046 0.045

R -0.005 1.000 0.867 -0.024 0.001 0.051 0.041 -0.032 -0.033

φa -0.007 0.867 1.000 -0.033 0.001 0.068 0.057 -0.042 -0.046

ANCBO
0.000 -0.024 -0.033 1.000 -0.005 0.002 -0.013 -0.006 0.006

φNCBO
0.013 0.001 0.001 -0.005 1.000 0.009 0.000 0.010 0.002

AACBO
0.049 0.051 0.068 0.002 0.009 1.000 0.001 -0.011 -0.012

φACBO
-0.054 0.041 0.057 -0.013 0.000 0.001 1.000 0.009 0.001

AφCBO
-0.046 -0.032 -0.042 -0.006 0.010 -0.011 0.009 1.000 -0.004

φφCBO
0.045 -0.033 -0.046 0.006 0.002 -0.012 0.001 -0.004 1.000

Correlation Matrix for Nine Parameter Fit, High-n

Par. A R φa ANCBO
φNCBO

AACBO
φACBO

AφCBO
φφCBO

A 1.000 -0.001 0.000 0.004 -0.015 0.021 0.081 0.071 0.025

R -0.001 1.000 0.861 0.007 0.014 -0.085 0.003 -0.041 0.067

φa 0.000 0.861 1.000 0.010 0.019 -0.114 0.007 -0.041 0.092

ANCBO
0.004 0.007 0.010 1.000 0.004 -0.013 0.027 -0.018 -0.021

φNCBO
-0.015 0.014 0.019 0.004 1.000 -0.035 0.001 0.020 0.026

AACBO
0.021 -0.085 -0.114 -0.013 -0.035 1.000 -0.005 -0.011 -0.016

φACBO
0.081 0.003 0.007 0.027 0.001 -0.005 1.000 -0.005 -0.007

AφCBO
0.071 -0.041 -0.041 -0.018 0.020 -0.011 -0.005 1.000 0.070

φφCBO
0.025 0.067 0.092 -0.021 0.026 -0.016 -0.007 0.070 1.000

Table 4.5: Correlation Matrix of the nine fit parameters of the full physics function for the low-n data set. Values are from the
fit to detector 25, around 40 µs.
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the fit functions is the difference of R vs. fit time between the various fit functions, shown
in Fig. 4.43 for detector 27. For the sake of clarity, the error bars are not plotted. Since
there are 4 different fit functions used, the differences shown are between the three and
five parameter fits (R3-R5), the three and seven parameter fits (R3-R7), the three and
nine parameter fits (R3-R9), the five and seven parameter fits (R5-R7), and so on. The
differences between R-values found from the three and five parameter ratio functions and
those found using the seven and nine parameter functions is stunningly clear. Although not
shown here, the effect is still evident when all data are summed (detector 25); the amplitude
of the oscillations is ∼ 0.3 ppm for the low n-value data and ∼ 0.8 ppm for the high n-value
data.

The last point is verified by Table 4.5, which shows the correlation coefficient matrix of
all free parameters used in the nine parameter ratio function, as determined by MINUIT. We
see that besides the g-2 phase, there are no other parameters that are strongly correlated
to the g-2 frequency. This is an important and distinguishing feature of the fit function’s
ability to describe the data.

The final R-value is therefore obtained from an average over fits to five different time
spectra, each using a different random seed to eliminate the fast rotation. Fig. 4.44 shows
one of the five R vs. Detector plots used to determine 〈R〉 for each data set (Golden low-
n, Golden high-n and Silver+Bronze low-n). Averaging over five random seeds, our final
R-values are: Rlow−n = 108.21 ± 0.91 ppm, Rhigh−n = 108.42 ± 1.10 ppm and RS+B =
110.55 ± 3.73.

4.4 2001 Systematic Errors on ωa

4.4.1 Energy Bin Analysis

By dividing the data up into energy bins we can see the energy-dependence of certain
fit parameters, specifically the asymmetry and CBO parameters. Ideally the precession
frequency, or R, is independent of the observed decay electron’s energy.

The data were divided up into seven energy bins, 200 MeV wide. However, since the
lower energy cut is typically around 1.9 GeV and the upper energy cut is fixed at 3.2 GeV,
many individual detector fits to data in the seventh bin failed for lack of data. Therefore,
in the following plots we will show results for the first six energy bins only.

Fig. 4.45 shows the fit results for the two data sets. The data from the individual
detectors were fit using the nine-parameter fit function at each detector’s corresponding fit
start time. 〈R〉(E) is then determined by fitting R versus detector to a constant. The 〈R〉
vs. energy plots are fit to a constant. The values of 〈R〉 are very consistent across energy
bins for both n-values, and the average over all energy-bins agrees very well with the results
obtained using only one energy bin. The lower left plots show the fit asymmetry vs. energy
bin. The values for the asymmetry are taken from fits to detector 27, the second half of the
ring, with a fit start time of ∼ 25 µs after injection. The three plots on the right of Figs. 4.45
and 4.45 show the amplitudes of the three CBO effects: NCBO, ACBO and φCBO. Although
the amplitudes of the effects are in relative agreement with each other between data sets,
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R vs. Det., Diff. Start Times, Low−n Data Set
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(a) Low-n data set.

R vs. Det., Diff. Start Times, High−n Data Set
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(b) High-n data set.

R vs. Det., Diff. Start Times, S+B Data Set
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(c) S+B data set.

Figure 4.44: R vs. Detector for the low-n (Golden and Silver+Bronze) and high-n data sets,
as determined using different start times for various detectors, using the nine-parameter
ratio function. R vs. Detector is fit to a constant to determine the average value R. Results
for only one random seed are shown.
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Low−n Data Set, 9 Par. Fit
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(a) 〈R〉 vs. energy bin (top) and fit asymmetry
vs. energy bin.

Low−n Data Set, 9 Par. Fit

N_c Amp. (Det. 27) Energy Bin

N
_c

A_c Amp. (Det. 27) Energy Bin

A
_c

_c Amp. (Det. 27)φ Energy Bin

_cφ

0

0.01

0.02

0.03

1 2 3 4 5 6

0

0.001

0.002

0.003

0.004

1 2 3 4 5 6

0

0.001

0.002

0.003

1 2 3 4 5 6

(b) CBO amplitudes vs. energy bin.

High−n Data Set, 9 Par. Fit
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(c) 〈R〉 vs. energy bin (top) and fit asymmetry
vs. energy bin.

High−n Data Set, 9 Par. Fit
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(d) CBO amplitudes vs. energy bin.

Figure 4.45: Various parameters as functions of energy bin obtained from fits to the low-n
and high-n data sets. Each value of 〈R〉 is obtained from a fit to R vs. detector using

different start times for each detector. Energy bin 1 corresponds roughly to 1.9 GeV, and
each bin is 200 MeV wide.
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(a) Low n-value data set.
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(b) High n-value data set.

Figure 4.46: Comparison between G2GEANT simulated data (red triangles) and actual data
(blue circles).

the trends of the amplitudes as a function of energy bin differ quite a bit, especially for the
φCBO term.

To check our energy-binned results, two G2GEANT-simulated data sets were produced by
R. Carey, each with the corresponding n-values and number of decay electrons of the true
data sets. The simulation completely describes the geometrical and physical characteris-
tics of the ring and detectors, decay electrons are tracked from their point of decay to a
detector. The simulation does not, however, fully simulate the electromagnetic showers in
the calorimeter; instead, it uses a faster parameterization (look-up table) of the detector
response to the energy of the decay electron. Using this parameterization, the observed en-
ergy agrees to within 1% of the fully simulated observed energy in the center of the detector
and within 10% near the edges.

Energy-binned ratio time spectra of the simulated data were produced and fit to the
nine parameter ratio function. The bin-width of the energy bins of the simulated data is
200 MeV, and the minimum energy is 2 GeV. However, since the simulated energy spectrum
does not perfectly match the energy spectrum obtained from true data, one cannot expect
perfect agreement between the simulated and data energy-bin studies. Nevertheless, as
Fig. 4.46 shows, there is in general good agreement between the data and simulation. All
fit results agree within ∼ 2 σ.

However, as was first demonstrated by C. Polly, there is a rather poor degree of consis-
tency of R vs. energy in the high-n data set, when R is obtained from fits to detector 25.
This is equivalent to fitting the individual detector data at the same start time. R is not
flat vs. energy, and unfortunately the fit results are at a level for which it is very difficult to
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R vs. E, Det. 25, Low−n Data Set
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(a) Low n-value data set.

R vs. E, Det. 25, High−n Data Set
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(b) High n-value data set.

Figure 4.47: R vs. Energy bin for the low-n (left) and high-n (right) data sets. The lines
represent fits to a constant in the energy range 1.8-3.4 GeV. Results are from fits to the
three parameter ratio at ∼ 33 µs, however the results change very little when the nine
parameter fit function is used.

determine if there is a systematic problem or simply statistical fluctuations. Polly’s findings
were confirmed by every ωa analyzer, with varying degrees of consistency. Furthermore, one
finds similar results for 〈R〉 vs. E, where 〈R〉 is the average over 23 detectors.

Fig. 4.47 shows R vs. E for the low-n and high-n data sets Both R vs. E plots are fit to
a constant in the energy range 1.8-3.4 GeV. We see that the χ2 of the fit of a constant for
the low-n data set has a perfectly acceptable value, whereas the same fit to the high-n data
set has a χ2 of ∼ 2.1. It should be noted that similar results are obtained independent of
the fit function used; a comparison of R vs. E as determined from a nine parameter ratio
fit and from a three parameter ratio fit found little differences between the two.

To further investigate the behavior of R vs. E in both the low- and high-n data sets, the
data were split up into subsets according to chronological order. During the 2001 run, data
were taken with alternating value of n, so the first subset is of low-n, the second subset is of
high-n, the third subset is of low-n, etc. The subsets are henceforth labeled L1, H1, L2, H2,
etc., where “L” corresponds to low-n, “H” corresponds to high-n, and the number following
the letter corresponds to the subset of that data set. R vs. E was then determined for each
subset, and two subsets, H2 and L3, showed strange behavior of R vs. E, as evidenced by
the fit χ2’s of R vs. E to a constant. However, after performing extensive systematic studies
and eliminating many models, no “smoking gun” was found that could explain the R vs.
E behavior in the high-n (and in particular H2) data set (see [94] for further details). We
therefore claim that the behavior is of a statistical nature.

4.4.2 Energy Scale Changes

To study possible systematic effects of the applied energy scale change corrections on ωa,
the correction (Eq. 4.7) is scaled according to

E(αESC) =
E′

1 + αESC(ξ(t) − 1)/m
(4.45)
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dR vs. Fit Time vs. ESC Corr, Det. 25         (us)
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(a) Low-n data set.
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(b) High-n data set.

Figure 4.48: Difference of R vs. fit start time plots for the sum of all detector data between
uncorrected and gain-corrected data. Left: low-n results. Right: high-n results.

Therefore, if αESC = 0, no correction is applied, whereas αESC = 1 corresponds to the
applied correction. Fig. 4.48 plots the difference in resulting R-values between uncorrected
and gain-corrected data for the low- and high-n data sets. The solid blue circles represent
R(αESC = 0)-R(αESC = 1) vs. fit time, the solid red triangles represent R(αESC = 0)-
R(αESC = −1), and the open green circles and open purple squares represent similar differ-
ences involving R(αESC = 5) and R(αESC = 10), respectively. The differences are small for
reasonable gain corrections (eg, αESC ' 1): a maximum value of 0.08 ppm for the low-n data
set and a maximum value 0.15 ppm for the high-n data set. The difference also oscillates at
twice the g-2 frequency, which is expected from the ratio method (see Appendix B.2). The
large differences seen when a αESC ≥ 5 correction is applied is a statistical effect. Large
corrections to the energies result in large changes the number of events, such that many
high energy electrons are thrown out due to the applied upper energy cut, and many lower
energy electrons are added to the time spectrum that otherwise would not have passed the
applied lower energy cut.

To determine the systematic error on R from energy-scale change corrections, the slope
δR/dαESC is determined from fits to the data using the nine parameter ratio function at
each detector’s fit start time. As an example, the plot on the left of Fig. 4.49 shows R vs.
αESC for detector 2, using the low-n data set. The plot is fit to a straight line to obtain the
slope δR/dαESC in units of ppm/αESC. The systematic uncertainty on R is therefore

δRESC =
dR

dαESC
× δαESC (4.46)
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R vs. ESC factor, Det. 02
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(b) Distributions of δRESC over detectors.

Figure 4.49: δRESC is determined from the slopes δR/dαESC for each detector and the
conservative estimate α = 1 ± 0.4 in the applied correction.

where δαESC is the uncertainty of the applied correction. A comparison of the various energy
scale change corrections applied by the ωa analyzers shows agreement to within 40%, which
is taken as the uncertainty of the applied correction. The plots on the right of Fig. 4.49 are
the distributions of δRESC over the values determined for the 23 detectors for the two data
sets using the above prescription. We find that δRESC is less than 0.01 ppm for the low-n
data set, and 0.024 ppm for the high-n data set.

As discussed in Section 4.2.5, another energy-scale systematic effect is the correlation
between reconstructed energy and island length. I. Logashenko calculated the effect of
island length on average energy and estimated the energy-scale correction as a function of
time for each detector. Fig. 4.50(a) shows the correction for the worst-affected detector (7)
and a typical “quiet” detector (16). There is a g-2 oscillation in the correction since there is
a a higher probability of having two or more pulses on a WFD island at the peak of the g-2
cycle than at the trough. However, the particular shape and magnitude of the corrections
are difficult to predict, since they depend on the shape of the flash background seen by each
detector. Those detectors closest to and downstream from the point of injection obviously
see the largest effect, since they see the largest amount of flash. However, for some unknown
reason, detector 7 behaves worse than detector 4; the magnitude of the correction is nearly
twice as large for detector 7, yet the flash background is nearly half that seen in detector 4.
Luckily the amplitude of the oscillations is fairly small, at the level of 10−4. The differences
in R as a function of time for detectors 7, 16 and 25 (the sum of all detectors) are shown in
Fig. 4.50(b). As expected, detector 7 shows the largest difference in R. The effect on the
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Difference in ESC Corrections, Det. 07 us
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(b) δR versus time for detectors 7, 16 and 25,
where δR is the difference in R found between
applying and not applying the island length
ESC correction to the data.
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Figure 4.50: The varying WFD island length results in another ESC-like systematic un-
certainty on ωa. The island length varies with the g-2 frequency since there is a higher
probability of having two or more pulses on an island at the peak of the g-2 cycle than at
the trough.
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sum of all detectors is found to be approximately 0.1 ppm near 32 µs after injection.

The two plots in Fig. 4.50(c) show the distributions of the differences in R between fits
to corrected and uncorrected data for each detector at their individual start times. The
results are very consistent for both data sets: the mean difference in R is ∼ 0.09 ppm.
We therefore claim 0.1 ppm as the systematic uncertainty due to this effect. Note that
we do not yet add this in quadrature to the systematic uncertainty on R from the applied
energy-scale corrections, since we wish to treat these two effects differently when combined
with other systematic errors (eg: pileup subtraction).

4.4.3 Coherent Betatron Oscillations

With the nine parameter physics function, the CBO systematic error on R arises primarily
from uncertainties in the frequency and functional form of the CBO. To determine the CBO
systematic error on R, the slopes dR/dτc and dR/dfc are determined from fits to the nine
parameter ratio function. For the low-n data set, the CBO lifetime was varied from 82.1 to
102.1 µs in 5 µs steps, and in a separate study, the CBO frequency was varied from 417.5-
420.7 kHz in 0.8 kHz steps. Similarly, for the high-n data set, the CBO lifetime was varied
from 120.1 to 140.1 µs in 5 µs steps and the CBO frequency was varied from 489-492.2 kHz
0.8 kHz steps. The uncertainties in R are then given by

δRτc = δτc ×
dR

dτc
, δRfc

= δfc ×
dR

dfc
(4.47)

where δτc and δfc are the uncertainties of the CBO lifetime and frequency. The slopes
dR/dτc and dR/dfc are determined for each detector by fitting a straight line to the R vs.
τc and R vs. fc plots, and the distributions of these slopes for the 23 detectors are shown
in Fig. 4.51. Taking the mean values of the distributions, and an uncertainty of 5 µs in
the CBO lifetime and 0.6 kHz in the CBO frequency, we find for the low-n data set a value
of dRτc = 0.01 ppm and dRfc

= 0.03 ppm. For the high n-value data set the situation
is a bit worse, where we find dRτc = 0.02 ppm and dRfc

= 0.07 ppm. Assuming, quite
conservatively, that the CBO frequency and lifetime are 100% correlated, these errors will
be added linearly.

In addition to the intrinsic uncertainty of the CBO frequency, we must also consider the
effect of having a time dependent CBO frequency. Since the scraping voltage is turned off
(that is, increased to the nominal voltage) with an RC time constant of 5 µs at 7 µs after
injection, the quadrupole voltages are still slightly changing at our earliest fit start times.
During scraping, the n-value is [95]

n1 =
V1 + V0

2V0
n0 (4.48)

where the subscript “1” refers to the value during scraping and the subscript “0” refers to
the nominal value (eg: after scraping). The quadrupole voltages during scraping are set to
70% their nominal value, so n1 = 0.85n0. Therefore, we have

n(t) = n0(1 − 0.15e−(t−7)/5), t ≥ 7 (4.49)
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Figure 4.51: Distributions of CBO uncertainties determined for each of the 23 detectors at
their corresponding fit start times. Top: Low-n data set. Bottom: High-n data set.

Since
fcbo = fc(1 −

√
1 − n) (4.50)

where fc is the cyclotron frequency, then plugging in the above time-dependent n-value one
can easily show that

fcbo(t) = fcbo0
− 0.15fcn0

2
√

1 − n0
exp(−(t− 7)/5) (4.51)

At ∼ 23 µs after injection, the CBO frequency is nearly 0.5% lower than its nominal value.
However, putting this time-dependent frequency into the 9-parameter ratio fits did not
improve the χ2 of the fits to the data at early times, and the distribution of differences in
R from fits with and without the time-dependent CBO frequency has a mean value of 0.02
ppm for both the low- and high-n data sets. We therefore claim 0.02 ppm as the systematic
uncertainty from the time-dependence of the CBO frequency.

Another issue to consider is whether or not all CBO terms have the same functional
form. To estimate the sensitivity of R to different different CBO envelopes for different CBO
terms, the data were fit assuming different lifetimes of the Nc(t) term than for the Ac(t)
and φc(t) terms. For the low-n data set, the average value (over fits to the 23 individual
detectors) of ∂R/∂τN is 2.2×10−4 ppm/µs and the average value of ∂R/∂τA,φ is −4.2×10−5

ppm/µs. For the high-n data set, ∂R/∂τN = 7.6×10−5 ppm/µs and ∂R/∂τA,φ = −1.6×10−3

ppm/µs. Since the RMS spread of the distributions of CBO lifetimes determined from the
studies in Section 4.3.1 is approximately 50 µs, this is a reasonable estimate of the spread
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in lifetimes that would be representative of a very different CBO functional form and/or
lifetime of the CBO. Therefore, we find the uncertainty in R from the uncertainty in the
CBO envelope is 0.01 ppm for the low-n data set and 0.08 ppm for the high-n data.

Finally, it is possible that the functional form of the φc(t) term has two contributions,
one from the time dependence of the radial mean of the beam and the other from the time
dependence of the radial width of of the beam. Each contribution may have a different
lifetime and phase. The absolute worst-case scenario is if the mean and width contributions
have completely opposite phases. Although we know from tracking simulations that the
width and mean are only slightly out of phase, the worst-case-scenario was studied in fits
to computer generated time spectra. Twenty-four time spectra were produced with Nc, Ac

and φc terms included with different phases that vary linearly (from 0 to 2π) around the
ring, and equal amplitudes for each spectra except three (eg: the kicker detectors), where
the amplitudes are 50% larger. The general form for the φc(t) term is

φc(t) = φc0(A1 exp(−t/τc1) cos(ωct+ φc) − (1 −A1) exp(−t/τc2) cos(ωct+ φc)) (4.52)

The relative amount of mixing between the radial mean contribution and the radial width
contribution to φc(t) was varied such that A1 = 15-75% in 15% steps. Furthermore, τc2 was
varied from 0.5× τc1 to 1.5× τc1 in three steps. On average, the R value obtained from the
naive 9-parameter fit differed by 0.04 ppm from the input value, with a spread of 0.04 ppm.
We therefore claim 0.04 ppm as our estimate of the systematic uncertainty due to the CBO
phase term having out-of-phase contributions from the radial mean and radial width.

Adding all uncertainties together in quadrature, the total CBO systematic error is 0.06
and 0.13 ppm for the low-n and high-n data sets, respectively.

4.4.4 Pileup

Pileup is a time dependent background that oscillates at the g-2 frequency. Therefore, to
estimate the pileup systematic uncertainty, one must estimate the efficiency with which
the pileup time spectrum is constructed as well as the uncertainty on its phase. The
pileup construction efficiency may be regarded as the uncertainty on the amplitude of the
background.

The pileup amplitude systematic uncertainty on R is determined from the relation

dRαPUS
= δαPUS × dR

dαPUS
(4.53)

where δαPUS is the uncertainty on the pileup amplitude. To determine δαPUS , we compare
pileup-subtracted (PUS) energy spectrum of decay electrons with 20 < t < 250 µs and the
unsubtracted energy spectrum of decay electrons with t > 250 µs. Since there is less data
after 250 µs, the energy spectra from the late-time data must be scaled up by a factor λ.
The scale factor λ is obtained by taking the ratio of Nearly(E) to Nlate(E) and fitting the
region 2.3 GeV < E < 2.7 GeV to a constant. Typical values for λ are 34.3, which is very
close to what one would expect from the simple approximation of exp((250 − 20)/64.4.
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Figure 4.52: Estimation of δRαPUS
, the pileup construction efficiency systematic error.

We define the parameter ζ such that

ζ(E) =
NearlyPUS

(E) − λNlate(E)

Nearly(E) − λNlate(E)
(4.54)

Assuming no energy-dependence in constructing pileup pulses, the average value of ζ in the
region where pileup dominates the spectrum (energies above 3.1 GeV) is an approximation
of the inefficiency with which we construct the pileup, δαPUS . Fig. 4.52(a) shows the average
values of ζ versus detector, where the average value of ζ is taken from 3.1-4.5 GeV. With a
few exceptions, we typically construct pileup with an efficiency > 95%.

The slope dR/dαPUS are determined from straight-line fits to R vs. αPUS , where the
R-values are obtained from fits to data with varying fractions, αPUS , of pileup subtracted.
In this study, αPUS ranged from 0.9-1.1 in 0.025 steps. Fig. 4.52(b) shows the distributions
of dRαPU

, the systematic error on R, over the 23 detectors, for each data set. The values
of dRPUe were taken from the product of dR/dαPUS and the inefficiency (δα) of pileup
construction determined for each detector. Taking the means of these distributions as the
average systematic error, we find that dRPUe = 0.034 ppm for the low n-value data set, and
0.009 ppm for the high n-value data set.

As has been discussed[96], there could be a difference between constructed and true
pileup phases. To investigate this effect, decay electron time spectra were generated assum-
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Figure 4.53: The dependence dR/dφPU is determined from fits to simulated decay electron
time spectra with a difference in phase between the true pileup and constructed (and sub-
tracted) pileup. dR vs. fit start time are plotted in Fig. 4.53(a) for phase differences of -40,
-20, 20, and 40 mrad. The simulated time spectra assume a 0.42% pileup contamination at
the fit start time. Fig. 4.53(b) shows the fitted pileup phase as a function of energy. The
phases are determined by fitting the energy-binned pileup time spectra to Eq. 4.55.

ing the five parameter function with a pileup term of the form

NPU(t) = N0PU
e−2t/τµ (cos(ωat+ φPU +A1 cos(2ωat+ φPU2

) +A2) (4.55)

The function has terms that go as rate (cos(ωat)) and rate-squared (cos2(ωat) ∼ cos(2ωat)),
and a constant term as well. The values N0PU

/N0 = 0.42%, A1 = 0.07 and A2 = 0.34 used
to generate the time spectra were obtained from fits to data-constructed pileup, as were the
phases φPU = 3.0474, φPU2

= 2.9584. The pileup background term with different phases

than those used to create the original time spectrum was then subtracted out. Differences
between “true” and “constructed” phases were varied from -40 to 40 mrad, in 20 mrad
steps. The plots shown in Fig. 4.53(a) show differences in fit values of R as a function of
fit time between spectra that have the “true” pileup subtracted off and time spectra that
have phase-shifted pileup subtracted off. An error in the phase of pileup construction of 20
mrad results in a ∼ 0.3 ppm error in R.

The dominant error in the constructed pileup phase arises from uncertainties in either
the Logashenko coefficients or the energy-dependent dead-time used to construct the pileup
pulses. Pulses will be added or lost “near” the edges of the upper and lower energy thresholds
if the energies of the pileup pulses are mis-constructed. Since the phase is energy-dependent,
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this could cause the constructed pileup phase to differ from the true pileup phase. According
to Logashenko[97], the energy-dependent dead-time and coefficients used to construct the
pileup have an uncertainty of ∼ 10%.

To estimate the size of this effect, energy-binned pileup time spectra were fit to Eq. 4.55;
the fit values of the pileup phase vs. energy bin are shown in Fig. 4.53. The energy bins
are 200 MeV wide, and results from energy bins 1.7-3.3 GeV are shown. In addition, fits
to larger energy bins were made: “All” represents the sum over all energy bins, and the
numbered bins represent the sum over those bins (eg: 1.9-3.1 GeV is the sum of the data
from 1.8 to 3.2 GeV). Of the last five, the 1.9-3.1 bin is very similar to the energy-cuts used
in constructing the time spectra for this analysis, and so the last four bins, 1.9-2.9, 1.9-3.3,
1.7-3.1 and 2.1-3.1 are as if 100% of the bins on the edges of the energy-cuts were added
in or subtracted off from the data. We find that the largest change (∼ 2.8 mrad) in pileup
phase arises when the lowest energy bin is thrown out. This is not unexpected, since the
pileup phase changes more rapidly in this energy region than in the higher energy region.
Although it is difficult to imagine that an entire 200 MeV-wide energy bin could have been
during pileup construction, we nevertheless use this very conservative estimate as an upper
limit on the systematic error of the constructed pileup phase. From Fig. 4.53 we see that a
2.8 mrad uncertainty in the PU phase results in a 0.042 ppm systematic error on R.

Very low-energy pulses that sit below the pedestal in the WFD data stream are not
reconstructed and are therefore “invisible”. Since there are a great number of such pulses,
we must concern ourselves with how the effect the reconstruction of single pulses. The
properties of the pulse reconstruction algorithm are such that on average the effect of low-
energy pulses on the fitted energy and time of single pulses cancels out. However, these
pulses do effect the average observed phase. This was also studied by Logashenko[98] as
well as G. Onderwater. Both found the same overall phase difference produced by the low
energy pileup, however Logashenko’s estimate of 0.06 ppm was obtained assuming that a
phase difference in the pileup of 1 mrad is equivalent to a 3.5 ppm error in R. Onderwater,
on the other hand, did an actual simulation and found the sensitivity to be much smaller,
by a factor of 3. Since both studies found the same phase difference, Onderwater’s estimate
of 0.02 ppm supersedes Logashenko’s estimate of 0.06 ppm.

Adding all errors in quadrature gives dRPUS = 0.06 ppm for the low-n data set and 0.05
ppm for the high-n data set.

4.4.5 Muon Losses

To obtain the muon loss systematic error on R, we generate decay electron time spectra with

no statistical fluctuations according to the five parameter functional form and include muon
losses of varying amounts. The functional form of the muon losses is an empirical fit to the
low-n 3FC time spectrum (see Section 4.2.7), where the data were fit to an exponential from
30-70 µs, another exponential from 70-100 µs, and a Gaussian from 100-300 µs. The muon
lifetime was also divided out of this function. Figs. 4.54 show the muon loss rate (left) and
integrated muon losses (right). The integrated muon losses are normalized such that at very
late times, the function goes to one. Therefore, a scale factor multiplying the integrated
muon losses corresponds to the total (percentage of) muons lost during data taking.
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Figure 4.54: An empirical description of the muon loss time spectrum is used to as a
background in generated decay electron time spectra. The effect on R is then determined
from fits to these spectra.

The function used to create the time spectrum is

N(t) = N0e
−t/τ (1 +A cos(ωat+ φ)) exp(−ALFL(t)) (4.56)

where

FL(t) =

∫ t

t0
f3FC(t′)dt′ (4.57)

and AL =0.0, 0.25%,0.5%, 0.75% and 1.0%. The ratio is then created from the original time
spectrum and fit to the three parameter ratio function. Comparing the fit results of spectra
with muon losses to the fit results of the spectrum with no muon losses, we find that the
effect on R is extremely small. Fig. 4.55 shows the difference between fit results of spectra
with and without muon losses. We see that if we lose a total of 0.6% of our injected muons
after scraping, a number which is similar to loss rates determined from multi-parameter fits
of the actual data, the effect on R is much less than 0.01 ppm at the earliest fit times.

We should also consider whether the missing decay electrons from lost muons have a
different average g-2 phase or asymmetry from the rest of the ensemble. To study the effect
on R, time spectra were generated as described above, but with different asymmetries and
g-2 phases for the lost decay electrons. The two plots in Fig. 4.56 show the size of the effect
on ωa for each of these effects. The effect of a slightly changing asymmetry (left plot) has
very little effect on R. This is no surprise, as we know that A is not strongly correlated to
R in the fits. Indeed, most of the error on R is due to the effect on the number of decay
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Figure 4.55: Effect of muon losses on R vs. fit start time with the ratio method. Plotted
here is fit R(no losses) - fit R(losses). Note the scale of the effect: < 10−4 ppm.

positrons, since the amplitude of the phase pulling changes very slightly as the asymmetry
changes.

However, as expected, a changing average g-2 phase has a much larger effect on R (left
plot of Fig. 4.56). A difference in g-2 phase between the stored and lost muons could arise
from either beamline or storage ring beam dynamics. In the former, muons born before
the pion momentum selection bend in the beamline (see Fig. 2.2) have a different g-2 phase
than those muons born after the bend (in the straight pion decay channel of the beamline).
In the latter, lost muons typically exist at the edges of the phase-space distribution, and
correlations between the observed g-2 phase and position the muon when it decays.

Beamline Effects

As muons pass the dipole magnets used for pion momentum selection, their spins are rotated
by ∼ 13 mrad[99]. However, most muons that are stored in the g-2 ring are born after this
point in the beamline. Since muons born before and after this point in the beamline have
different momenta, the muons born earlier may be preferentially lost, resulting in a changing
average g-2 phase during a fill.

The beamline lost muon systematic uncertainty on R has been estimated using both
beamline acceptance calculations and detailed tracking simulations. W. Morse uses the
acceptance of the beamline and storage ring to set an upper limit of dRloss < 0.13 ppm.
The author used the g2track simulation. In order to obtain reasonable statistics, muons
lost during scraping are used in this study. However, only muons that are lost after 4 turns
around the storage ring are considered, which means these muons at least survive injection
and the kick. Stored muons are those that have not been lost after ' 75 µs after injection
(muons do not decay in g2track).

The initial spins are obtained from the BTRAF program, which not only simulates the g-2
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Figure 4.56: Effect on R vs. fit start time of muon losses assuming a 0.6% total loss and dif-
ferent average g-2 phases and asymmetries. The nominal average g-2 phase in the simulated
spectrum is 1.5 rad, and that of the asymmetry is 0.4.
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Figure 4.58: Average g-2 phase as a function of radial and vertical position in the storage
aperture, determined from G2GEANT. The phase is averaged over azimuthal position (23
detectors), time and energies above 1.8 GeV.

beamline, but also tracks the spin of the muons born along the way from the AGS target
to the end of the g-2 inflector. The g-2 phase of the muons at the time of injection is

φxz = tan−1
(

sx

sz

)

(4.58)

The distributions of initial phases are shown in the right plots of Fig. 4.57. Using the
RMS/

√
N as the statistical error, we find that the average g-2 phase of the stored muons

is -35.5 ± 0.4 mrad and that of the lost muons is -28.8 ± 0.9 mrad. Therefore, there is a
difference of -6.7 ± 1 mrad. Looking at Fig. 4.56 and interpolating between the -4 and -8
mrad plots, we see that this will give an approximate error of 0.1 ppm for a total muon loss
of 0.6%. Since X. Huang finds that the total muon loss is approximately 0.5% for the low-n
data set and 0.03-0.04% for the high-n data set, the error is scaled down to 0.08 and 0.06
ppm respectively at a fit start time of 30 µs.

Storage Ring Beam Dynamics Effects

The storage ring lost muon systematic uncertainty was also studied using g2track. The
average g-2 phase was first determined as a function of position in the storage ring by
Q. Peng and R. Carey using G2GEANT. Although φ(x, y) was determined in their studies,
Fig. 4.58 shows only the projections along either the y- or x-axes, φ(x) and φ(y). It is also
important to note that the average phase was calculated from the sum of all data, integrated
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over both azimuthal position in the ring and in time.

Using the values of 〈φ(x, y)〉, the average g-2 phase may be determined as a function
of time in g2track. In this study, we sample as much of the phase space of the muon
distribution as possible by assuming that each muon decays at the same azimuthal location
in the ring at each turn around the ring. Figs. 4.59(a)-4.59(b) show the average phase as a
function of time calculated in this manner for the two n-values used in the 2001 run. Note
both the envelope and the amplitude of the CBO oscillations of 〈φ〉(t). The envelope does
not appear to come from only either the radial mean vs. time or the radial width vs. time;
it is more likely a mix of the two effects. The amplitude of the oscillations, on the order of
0.25 mrad, or nearly 175 ps, agrees very well with predictions for the drift-time effect. The
reason the amplitude does not agree with the overall amplitude of the φcbo term obtained
from fits is that the acceptance effect, which depends on the direction of the beam, was
averaged out in the determination of 〈φ(x, y)〉. Therefore, the only way we may directly see
the full φcbo(t) effect is to produce 〈φ〉 vs. t plots from the G2GEANT data.

As mentioned previously, if the muons that are lost have a different phase-space dis-
tribution than muons that are not lost, then the average g-2 phase will change in time.
To estimate this effect, we determine the average phase difference between lost and stored
muons. Figs. 4.59(a)-4.59(b) show the average phase as a function of time for the stored
muons. Figs. 4.59(c)-4.59(d) show the same for those muons that are (eventually) lost. We
find that for the low-n lost muons, the average phase is larger (and increasing in time) than
the stored muons, whereas for the high-n lost muons, the average phase is initially smaller
than that of the stored muons, but also increases in time. The increase in the average phase
arises from increases in the betatron amplitudes as the muons that will be lost undergo
resonance.

We next generate time spectra as described above, however we assume a changing dif-
ference in phase between stored and lost muons. The time dependence of this difference is
obtained from fits of a straight line to the data shown in Figs. 4.59(c) and 4.59(d). For the
low-n data set,

∆φ(lost − stored) = 2.2mrad + t× (2 × 10−3mrad/µs) (4.59)

and for the high-n data set,

∆φ(lost − stored) = −2.2mrad+ t× (8 × 10−3mrad/µs) (4.60)

In the simulated time spectra, the slope d∆φ/dt was varied from 2.5 to 10.0 ×10−3, and
the growth of the lost muon phase was stopped at 100 µs. The level of losses assumed in
the simulation is 0.5%.

Converting the simulated time spectra to the ratio and using the three parameter ratio
function, we find the (absolute) difference in R (with respect to the value put into the
simulation) to be between 0.03 and 0.044 ppm for the low-n set at 30 µs. The effect is even
smaller for the high-n set (see Fig. 4.60). However, because of uncertainties in the slope of
the phase vs. time for the lost muons and the sign of phase, we conservatively estimate an
upper limit of the systematic uncertainty: dR < 0.04 ppm.
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Figure 4.59: Average g-2 phase of stored (top) and lost (bottom) muons in g2track as a
function of time for the two quadrupole HV settings used in the 2001 run.
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Figure 4.60: Changes in R vs. fit start time for such differences between the lost and stored
muon g-2 phases as were found from g2track simulations.

Total Muon Loss Systematic Uncertainty

The systematic uncertainties discussed here were calculated assuming a fit start time of
30 µs. Since in this analysis the average fit start time is ∼ 25 µs, we must scale up the
error to account for the effect of starting our fits earlier by 5 µs. Extrapolating the muon
loss function backward by 5 µs, we find that the total fraction of lost muons increases by
∼ 18%. Therefore, for this analysis, the beamline lost muon systematic error is estimated
to be 0.094 ppm for the low-n data set and 0.071 ppm for the high-n data set. The storage
ring lost muon systematic is 0.047 ppm for both data sets. Adding the uncertainties in
quadrature, we find dRµloss

= 0.11 ppm for the low-n data set and 0.09 ppm for the high-n
data set.

4.4.6 Changes in Beam Position

Since the average g-2 phase depends on the average position of beam (see Fig. 4.58, for
example), slow changes in the average position of the beam during a fill would result in
an early-to-late change in the phase. Such slow changes might be possible if, for example,
the high voltage on the electrostatic quadrupoles were to droop over the 700 µs over which
the data are fit. A droop in the quadrupole high voltage would also change the vertical
width of the beam. The effects that changes in average vertical position and width of the
beam have on the average g-2 phase were studied extensively by Q. Peng, R. Carey and J.
Miller using G2GEANT [100], and limits on the changes in the vertical position of the beam
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were determined from FSD studies by D. Hertzog and C. Polly. The conclusion from these
studies is that the beam position change systematic uncertainty is less than 0.02 ppm.

4.4.7 Other Systematic Uncertainties

The systematic uncertainties previously discussed are typically considered the more “dan-
gerous” of all systematic effects, since they all cause the average g-2 phase to change with
time. However, there are several other less dangerous systematic effects that must be stud-
ied. Here we discuss uncertainties arising from fill selection, “other betatron oscillations”
(eg, vertical oscillations and double radial CBO), choice of bin width, fast rotation random-
ization, shifts in the pick-off time from the WFD, fit procedure and AGS background. Some
of these effects are completely negligible, others result in uncertainties in R of comparable
size to those determined for the more dangerous systematic effects.

Fill Selection

As discussed in Section 4.1.2, various cuts were made on each fill in order to filter out
such potential problems as laser contamination, quad sparking, misreading the T0 pulse,
and narrow pulse contamination. If we could assume that these cuts are 100% efficient,
we would not need to assign a corresponding systematic error on the precession frequency.
However, when the data rate flowing through the DAQ is very high, the data may be
misread or fills may become misaligned between the various VME crates. Therefore, there
is the possibility of using some data that are corrupted in some way.

During the run selection process, C. Polly looked for coincidences between various non-
contiguous detectors in order to eliminate runs that may have a large amount of laser
contamination. If after applying a cut on the laser flag one finds many coincidences between
detectors, then it is very likely that the laser flag was misread. Since no laser runs were
found that showed a large number of coincidences when the laser flag was not set, we may
assume the laser cut to be 100% efficient.

We may estimate the level of contamination of DAQ misreadings in the other non-laser
runs from Polly’s work. No DAQ misreadings were found for approximately 1.2 × 107

pulses. Since there are approximately 80 pulses on average per fill, this means Polly looked
at approximately 150,000 fills. We therefore set an upper limit on the fraction of DAQ
misreadings in the data set at approximately 7 ppm.

To set an upper limit on the systematic errors on R due to quadrupole cut inefficiencies,
five parameter decay electron time spectra were generated where a fraction of the decay
electron times were truncated at 225 µs after injection. This would happen if, for example,
the fill cuts failed to catch a quadrupole spark. The fraction of truncated data was set to
both 10 and 50 ppm. Fitting the data to the 3-parameter ratio function we find the largest
systematic shift in R to be less than 0.00005 ppm, which we neglect.

The T0 cut applied to each fill requires that the signal from the T0 counter has a non-
zero value between 50-65 µs and an amplitude in the WFD greater than 30 ADC counts.
The relationship between these T0 requirements was investigated, and a 100% correlation
was found between them. Therefore the only way that the T0 signal could be wrong is
if, because of a DAQ failure, the wrong T0 time is used. However, the distribution of T0
per fill is fairly narrow, with a width of a few nanoseconds. Using a “wrong” T0 would
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therefore mean using a T0 that is shifted by a nanosecond or two, which would only dilute
the g-2 asymmetry in the data (thereby increasing the statistical error), and would cause no
early-to-late shift in the observed energies or times of decay electron pulses. We therefore
may safely ignore this issue.

Finally, we compare the fit results from before and after the narrow pulse cut was
applied. The final results changed by 0.2 ppm for the low n-value data, and less than
0.05 ppm for the high n-value data. The narrow pulse cut is based on Q. Peng’s narrow
pulse studies, and he finds[101] that of the 19,617 and 4,652 two-peak narrow pulses above
1.8 GeV that he finds in the low-n and high-n data respectively, 268 and 128 two-peak
narrow pulses remain after applying a cut on the average fit χ2 per fill. Therefore the cut
is approximately 1.4% and 2.8% inefficient for the low-n and high-n data sets respectively.
This implies a systematic error on R of 0.003 ppm and 0.001 ppm for low-n and high-n data
sets respectively.

Other Betatron Oscillations

Besides radial CBO, the decay electron counting rate is also modified by other betatron
oscillations. The three other dominant oscillations are the radial width of the beam, the
vertical width of the beam, and the vertical betatron oscillation. The radial width oscillates
at the frequency of twice the radial CBO frequency, and is therefore dubbed double CBO,
or DCBO. The vertical betatron oscillation (VBO) frequency is

fvbo = fc(1 −
√
n) (4.61)

where fc is the cyclotron frequency, and vertical width, also referred to as the vertical waist
(VW), oscillates at the frequency

fvw = fc(1 − 2
√
n) (4.62)

Since the vertical oscillations are of rather high frequency, they dephase rapidly and are
only seen in the data at very early times after injection. All oscillation frequencies are seen
in the early-time residuals of fits to the data at late times. Furthermore, the radial width
oscillations of the beam are seen in the fiber harps, and the vertical oscillations are seen
by the FSDs when one takes the difference of the time spectra of FSD tiles 2 and 4 (see
Fig. 4.61-4.62). It should be noted that the vertical breathing of the beam was not seen
by the FSDs when looking at other combinations of FSD tiles (eg: 3-2-4), however the
frequency appears as a clear peak in the FFT of the early-time residuals of the fits to the
data.

The effect of DCBO was added to the fit function by modifying the nine parameter ratio
function such that

f0(t) = [1 +ANCBO
(t) +ANDCBO

(t)] × [1 +A(1 +AACBO
(t)) ×

cos(ωat+ φa(1 +AφCBO
(t)))] (4.63)

where
ANDCBO

(t) = ANDCBO
e−2t/τCBO cos(2ωCBOt+ φNDCBO

) (4.64)
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Figure 4.61: Vertical oscillations as seen by the FSDs by looking at the differences between
tiles 2 and 4 as a function of time. Top: Sum of all “tile 2 - tile 4” time spectra from 33-100
µs. Bottom: Same as top, but from 33-50 µs, where the VBO oscillations are more easily
seen.

f±(t) were modified in a similar fashion. Note that the lifetime of DCBO is fixed to half the
lifetime of the radial CBO, and the frequency is fixed to twice the radial CBO frequency.
The plots in Fig. 4.63(a) show the distributions of differences in R between fitting for DCBO
and not fitting DCBO. The mean systematic error for both data sets is ∼0.025 ppm.

Vertical oscillations were similarly treated by modifying Eq. 4.38 to

f0(t) = [1 +ANCBO
(t) +ANvbo

(t)] × [1 +A(1 +AACBO
(t)) ×

cos(ωat+ φa(1 +AφCBO
(t)))] (4.65)

where
ANvbo

(t) = ANvbo
e−t/τvbo cos(ωvbot+ φNvbo

) (4.66)

f±(t) were modified similarly. The VBO lifetime is fixed to 28 µs, obtained from fits to
the FSD tile 2-tile 4 spectra, and the VBO frequency is calculated given the assumed CBO
frequency in the fit:

fvbo = fc ×
√

1 − (1 − (fCBO/fc))2 (4.67)

where fc = 6.703 is the cyclotron frequency in MHz and fCBO is the assumed CBO frequency.
The plots in Fig. 4.63(b) show the dR distributions for both data sets between fitting for
VBO and not fitting VBO. The mean systematic error for the low-n data set is less than
0.01 ppm and ∼ 0.02 ppm for the high-n data set.

Finally, the vertical waist was treated the same as vertical oscillations, with ANvbo
(t)

replaced by ANvw
(t), fvbo replaced with fvw (calculated from the assumed CBO frequency
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Figure 4.62: FFT of FSD “tile 2 - tile 4” time spectra. Top: low frequency range, showing
a g-2 peak. Bottom: high frequency range, showing the vertical BO peak.

in the fit) and τvw is set to 20 µs. The VW lifetime was obtained by fitting the relative FFT
amplitudes of the VW peak as a function of time, where the FFT spectra were binned in
separate g-2 periods (that is, FFT of residuals from 20-24.365, 24.365-28.73, etc.) The plots
in Fig. 4.63(c) show the dR distributions for both data sets between fitting for VW and
not fitting for it. The mean systematic error in ignoring VW in the fits is ∼ 0.02 ppm for
both data sets. Adding all error in quadrature, we find the total other betatron oscillation
systematic error on R for the low-n data set to be 0.03 ppm, and 0.04 ppm for the high-n
data set.

Bin Width and Randomization

The bin width systematic uncertainty has been studied in past years [102], and since there
is no new physics involved in this year’s analysis, we use the previous study’s results:
dRbw = 0.05 ppm. As for the elimination of the fast rotation structure in the data via fill
randomization, the uncertainty on R using only one random seed for fill randomization is
∼ 10% of the statistical uncertainty on R. Five different time spectra, each with different
random seeds, were constructed for the final analysis. Using the RMS spread of the five
fitted R-values to estimate the randomization systematic uncertainty, RMS(R)/

√
5 − 1, we

find dRrand = 0.03 ppm for the low-n data set and 0.09 ppm for the high-n data set.
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Figure 4.63: Effect on the fit values of R when neglecting the various other betatron oscil-
lation terms. dR = Robo − R9, where Robo is the fit value of R with the “other betatron
oscillation” term included, and R9 is the nominal fit value of R from the nine-parameter fit
function.
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Figure 4.64: Flashlet time and frequency spectra, all detector data summed together for
both data sets. The flashlets were measured by turning the quadrupoles off every mth fill.
The N(t) spectra are therefore scaled up by a factor of m, where m is determined on a
run-by-run basis (typically m ' 49).

Timing Shifts

The systematic error on R from timing shifts in the pick-off time of pulses from the detectors
has been determined by R. Carey to be 0.02 ppm [103].

AGS Background

In the 2001 data run, the quadrupoles were turned off every “m” fills, where m was changed
from 25 to 49 at some point near the beginning of the run. These “quad-off” fills allowed
a measurement of the time and energy spectra of the AGS background (or flashlets). The
top plots in Fig. 4.64 show the quad-off time spectra for both n-value data sets, and the
bottom four plots show the FFT spectra in different frequency domains, 100-1000 kHz for
the middle plots and 1-3.3 MHz for the bottom plots. The AGS cyclotron frequency of
∼ 370 kHz and its harmonics are clearly distinguishable; note also that there is no peak
above noise at the g-2 frequency. The time spectra were built for each run, and the usual
energy cuts were applied. The time spectra were later scaled-up by a factor of m, where m
is determined for each run (typically m ' 49). Fig. 4.65 shows the energy spectrum of the
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Figure 4.65: Flashlet energy spectrum and distribution around the ring.

flashlets and the distribution of flashlets around the ring (number of flashlets vs. detector)
for both data sets. We see that a significant fraction of flashlets deposit energies greater
than our lower energy threshold in the calorimeters, and that most flashlets are observed
in detectors just downstream of the injection point.

To determine the effect of AGS background on the fit value of R, the quad-off time
spectra were added to the quad-on time spectra, with multiplicative factors of -1.5, -1, -0.5,
0, 0.5, 1, and 1.5. Therefore, the multiplicative factor of -1 essentially subtracted out the
AGS background from the data, and the factor of 1 doubled the amount of AGS background
in the data. These time spectra were then fit to the 9-parameter ratio function; the largest
difference between fit R values from any of the fits was less than 0.01 ppm. We therefore
claim an AGS background systematic uncertainty of 0.01 ppm.

Fit Procedure

In this analysis, limits were set on all fit parameters in order to ensure fit parameter stability
and χ2 minimization convergence. However this procedure can be problematic with MINUIT,
since if a parameter is found to be at or near its limit then MINUIT cannot properly evaluate
the error on the parameter. Fairly loose limits were set on the important parameters, ie: A
and R, and φa had limits from 0 to 2π. The CBO amplitudes all had limits from 0 to 10
times the “typical” amplitudes found from the fits, and the CBO phases were also limited
to fall within 0 to 2π. Occasionally in the fit start time scans some of the CBO parameters
were found to be at or very close to their limits. However, R was never found anywhere
near its limits.
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Comparison of Radial Distributions

Method FFT CERN FFT CERN

Data Set Low-n Low-n High-n High-n

〈x〉 (cm) 0.245 0.252 0.202 0.229

σx (cm) 1.042 0.999 0.997 0.991

〈x2
e〉 1.146 1.062 1.035 1.035

CEr (ppm) 0.49 0.45 0.50 0.50

Table 4.6: Comparison of the means and widths of the radial distributions obtained by
the two fast rotation analyses, and the radial electric field correction obtained using their
results.

Still, to be sure that the value and errors of R were not systematically pulled, a study
was done where the limits on R were removed. About 90% of the fits converged, and the
average difference between those R values found with limits and those found without was
∼ −0.04±0.07 ppm. An order of magnitude smaller average difference (and also consistent
with zero) was found between the errors on R. Similar studies were done where not only
the limits on R were removed, but also the limits on the CBO amplitudes were removed,
and similar average differences (∼ 0.04 ppm) were found. We therefore set the systematic
error on R due to fit procedure at 0.04 ppm.

Radial Electric Field and Vertical Pitch Corrections

As discussed in Section 2.4.2, the radial electric field correction is

CEr = 2n(1 − n)

(

〈x2
e〉
ρ2

)

(4.68)

where, if one knows the radial distribution,

〈x2
e〉 = 〈x〉2 + σ2

x (4.69)

x is with respect to the central orbit, that is, 711.2 cm. Table 4.4.7 summarizes the electric
field corrections for each fast-rotation analysis and data set, where Eq. 4.68 is used assuming
n = 0.122 and n = 0.142 for the low- and high-n data sets respectively. Averaging the results
from the two fast-rotation analyses, we find CEr(low-n) = 0.47 and CEr(high-n) = 0.50 ppm.

Unfortunately since no systematic error analysis has been made for either of the 2001
fast-rotation analyses, we do not know what the systematic uncertainties are on 〈x〉 and
σx. One of the main issues with the radial distributions obtained from the fast rotation
analyses are the tails of the distribution which exist even beyond the limits of the storage
aperture. The radial distribution obtained from g2track has no such tails and the width
is consistently smaller by about 0.05 cm, or 5%. Onderwater has pointed out [104] that
the radial electric field correction changes by 10% when these tails are removed, which is
consistent with a 5% error on the width. Therefore, due to the unphysical presence of
the tails and their effect on the width, we claim a 5% uncertainty on the width, which
translates to a 10% uncertainty on the correction. Tracking studies[105] have shown that
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uncertainties on the average vertical position of the beam result in an uncertainty of 0.02
ppm on the radial electric field correction. Adding the uncertainties of the width of the
radial distribution (10% of CEr , or 0.05 ppm), and of the vertical position of the beam (0.02
ppm) in quadrature, we find a total systematic uncertainty in CEr of 0.054 ppm.

The vertical pitch correction is

CP =
1

2
ψ2

y =
1

2
n
〈y2〉
ρ2

(4.70)

Unfortunately we do not have data from 2001 with which we may determine ψ2
y or 〈y2〉. We

must therefore rely on traceback data from 1999 and tracking simulations. A distribution
of the vertical width is obtained from traceback data collected in 1999: 〈y2〉 = 1.92 cm2.
Once again, the uncertainty on this number is unknown. The n-value in this case was
∼ 0.135. Under similar experimental settings, g2track found 〈y2〉 = 2.21 cm2. According
to R. Carey [106], an acceptance correction of -3% should be applied to this result, which
gives 〈y2〉 ' 2.14 cm2. The difference in CP obtained from these two numbers is 0.03 ppm,
which we claim as the uncertainty. Tracking studies[105] have shown that uncertainties on
the radial and vertical positions of the beam result in an uncertainty of 0.02 ppm on CP .
Using the same n-values as were used during the 2001 data run, the values of CP determined
from g2track are CP (low-n) = 0.27 ppm and CP (high-n) = 0.32 ppm.

Adding the two corrections together, and adding the systematic uncertainties together
in quadrature, the total corrections (Ct = CEr +CP ) to be applied to the final values of ωa

are Ct(low-n) = 0.74 ± 0.065 ppm, and Ct(high-n) = 0.82 ± 0.065 ppm.

4.5 Summary

Table 4.7 summarizes the average values of the χ2/d.o.f. of the fits to R vs. Detector, the
resulting average R-values, and the asymmetry, phase and CBO amplitudes determined
from the nine-parameter ratio fits. The final R values determined from both data sets are
very consistent with each other: Rlow = 108.21 ± 0.91 ppm and Rhigh = 108.42 ± 1.10
ppm. The results for the smaller Silver+Bronze set of data are also in excellent agreement:
RSB = 110.55 ± 3.73. The uncertainties stated here are statistical.

The systematic uncertainties for all three data sets are summarized in Table 4.8. The
systematic errors for the “S+B” data set are for the most part assumed to be the same as
for the “golden” low-n subset with a few exceptions. Since there was less scraping and a
lower muon kick for these runs, we expect a larger fraction of muon losses. Therefore, the
muon loss systematic error is conservatively estimated to be twice the size for the S+B data
set than for the golden low-n data set. Also the randomization systematic uncertainty for
this data set is obtained independently in the same manner as for the other two data sets.
In calculating the total systematic error, we assume the individual systematics errors are
uncorrelated, and therefore all errors are added in quadrature to obtain a total systematic
uncertainty of 0.21 ppm for all data sets combined.

The final value of ωa is obtained from a simple arithmetic mean of the results from the
five different ωa analyses. The analyses differ primarily in the applied energy cuts and fit
functions used to extract ωa. Fig. 4.66 shows a comparison of the five results. The solid
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Values of Fit Parameters

Fit Low-n High-n S+B
Parameter Data Set Data Set Data Set

χ2/d.o.f. 22.49/22 36.72/22 24.50/22
of fit to R vs. Det.

R× 10−6 108.21(91) 108.42(1.10) 110.55(3.73)

A 0.38138(3) 0.38119(4) 0.3816(1)

φa 3.0322(1) 3.0323(2) 3.0288(6)

ANc × 10−2 0.922(10) 1.28(14) 1.99(36)

AAc × 10−3 2.50(25) 3.05(25) 6.50(94)

Aφc
× 10−3 6.62(83) 5.80(77) 2.08(30)

Table 4.7: Values of the fit parameters for the nine-parameter ratio fit. Results are for
one random seed, however χ2’s of the fit to R vs. Detector and the resulting R-values are
averaged over five spectra built from different random seeds.
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Figure 4.66: Comparison of the five ωa analyses.

circles represent results from the low-n data set, the open circles represent results from the
high-n data set, and the solid square represents the result of fits to all data combined. We
note that in this plot the results for the low-n and S+B data sets in this analysis were
combined to a single low-n result.

The first three analyses extracted ωa from fits to the decay electron time spectra. Deile
and Huang both fit the decay electron time spectra to functions with parameterizations for
CBO effects and muon losses, with slight differences in their implementation. Both used
electron energies in the range of 1.8 to 3.4 GeV, and fit the combined detector data starting
at ∼ 32 µs after injection. Polly also fit the decay electron time spectra to a parameterized
function, however the counts were weighted with the energy-dependent asymmetry. This
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Systematic Error Table (all units in ppm)

Syst. Low-n High-n Silver+Bronze Total
Error (L) (H) (S+B) (L+H+S+B)

ESC 0.01 0.02 0.01 0.01

WW 0.1 0.1 0.1 0.1

Pileup 0.06 0.05 0.06 0.05

CBO 0.06 0.12 0.06 0.08

Muon 0.11 0.09 0.21 0.10
Losses

Random- 0.04 0.05 0.18 0.05
ization

Timing 0.02 0.02 0.02 0.02
Shifts

Bin 0.05 0.5 0.05 0.05
Width

Other BO 0.03 0.04 0.03 0.03

AGS Bgnd 0.01 0.01 0.01 0.01

Fit 0.04 0.04 0.04 0.04
Procedure

Fill Cuts 0.01 0.01 0.01 0.01

CEr & CP 0.06 0.06 0.06 0.06

Beam 0.05 0.05 0.05 0.05
Pos.

Total
Syst. 0.21 0.22 0.33 0.21
Error

Stat. 0.91 1.10 3.73 0.69
Error

Table 4.8: Summary of systematic errors for the various individual and combined data sets.
All units are in ppm.

method minimizes the statistical uncertainty of the fitted value of ωa, and permits the
energy range of decay electrons to be extended. Furthermore, by using a fit function that
parameterized all statistically significant perturbations in the decay electron time spectrum,
Polly was also able to obtain an acceptable fit χ2/d.o.f. at an average fit start time of 25 µs
after injection for the sum of data from those detectors that were gated-on early. Using the
asymmetry weighted method, electrons in the range of 1.5 to 3.4 GeV and earlier fit start
times, Polly obtained a 10% improvement in the statistical uncertainty of ωa.

The last two analyses, including the author’s, extracted ωa from fits to the ratio. Shagin
used electrons in the range 1.8-3.4 GeV, although with slightly different ADC to GeV
conversion factors from those used in this analysis. Furthermore, Shagin took advantage of
the fact that the CBO oscillations in the two data sets are nearly 180◦ out-of-phase, and
added all data together. This significantly reduced the amplitude of the half-ring effect,
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and his CBO systematic uncertainty is estimated from extensive MC simulation studies.
The fit results from the analyses have been shown to be in agreement to within the

expected deviations from the differences in data selection and methods of extracting ωa.
Adding the value of Roff = −7.80 ppm to the average value of R, and adding the radial
electric field and vertical pitch corrections to the value of ωa, we find fa = ωa/2π =
229073.59(15)(5) Hz. The first uncertainty is statistical and the second is systematic, and
both are calculated taking into account the correlations among the five analyses. The
correlations are dominated by the overlap of data used in each analysis.
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Chapter 5

Conclusion

5.1 Determination of aµ−

After removing the different offsets used in the 2001 ωp and ωa analyses, the value of aµ−

was calculated according to the relation

aµ =
R

λ−R = 11659214(8)(3) × 10−10 (5.1)

where Rµ− = ωa/ωp = 0.0037072083(26) and λ = µµ/µp = 3.18334539(10)[44]. The first
error is statistical and the second is systematic. The measured value of Rµ− is in good
agreement with the average of the previous measurements of Rµ+ = 0.0037072048(25),
the difference being ∆R = (3.5 ± 3.4) × 10−9. Assuming charge, parity and time (CPT)
symmetry and taking into account correlations between systematic uncertainties between
the various data sets, the new average value of Rµ = 0.0037072063(20). From this result
we obtain the new average value of aexp

µ = 11659208(4)(3) ×10−10, a relative uncertainty of
0.5 ppm [107].

5.2 Discussion

Fig. 5.1 shows a comparison between the experimental and theoretical values of aµ. The
differences are

∆aµ =

{

(27.0 ± 10.0) × 10−10 (e+e−−based)
(12.3 ± 9.2) × 10−10 (τ−based)

(5.2)

5.2.1 Muon Electric Dipole Moment

The electric dipole moment (EDM) is defined as

~d =
η

2

(

e

4m

)

~S (5.3)

Lepton EDMs are expected to be extremely small in the Standard Model, de ' −1.5 ×
10−38e·cm and dµ ' −3 × 10−36e·cm [108]. The current experimental limit on the electron
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Figure 5.1: Comparison of the most current experimental and theoretical values for aµ.

EDM is |de| < 1.5×10−27e·cm (95% CL). From naive mass-scaling arguments (dl ∼ ml/mΛ,
so dµ ∼ mµde/me) one expects |dµ| < 3.1× 10−25e·cm (95% CL). Unfortunately the exper-
imental limit on the muon EDM is nearly six orders of magnitude larger. A limit on the
muon EDM may be set using the difference between the experimental and theoretical values
of aµ. However, |dµ| may be obtained experimentally and independently of aµ by measuring
from an up-down asymmetry in the number of observed decay electrons. Both approaches
use the fact that an EDM changes the equation for the spin difference frequency.

In the case of γ = γmagic and neglecting ~β · ~B and ~β × ~E terms, ωa becomes

~ωa =
e

m
aµ
~B + 2d( ~E + ~β × ~B) (5.4)

The 2d ~E term is negligible. Therefore the measured spin frequency depends on both aµ

and d:

aexp
µ =

√

(aSM
µ )2 +

(

m

e

)2

(2d)2 (5.5)

so that

d =
1

2

e

m

√

(aexp
µ )2 − (aSM

µ )2 (5.6)

Assuming no measurable contributions to aµ from physics beyond the standard model, and
using the latest experimental value and theoretical estimate for aµ, we find that

d =

{

(2.38 ± 0.83) × 10−19 e · cm (e+e−−based)
(1.79 ± 1.05) × 10−19 e · cm (τ−based)

(5.7)
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From Eq. 5.4 we see that the presence of an EDM gives the spin precession frequency
vector a radial component (assuming ~B = (0, By, 0)). Therefore the plane of the spin
precession is tilted in the vertical direction by an angle

δ = tan−1

(

ηβ

2aµ

)

(5.8)

This tilt results in a time-dependent, up-down asymmetry in the decay rate. Limits on the
muon EDM may be placed by searching for an asymmetry in the number of decay electrons
between the upper and lower halves of our detectors. An analysis [108] of the 2000 FSD and
calorimeter data from E821 places a new limit for the muon EDM: |dµ| < 2.7 × 10−19e·cm
(95% CL).

We note that, although the limits on the muon EDM are rather weak, it is unlikely that
the difference ∆aµ arises from dµ. Although new physics, such as SUSY, produces a larger
muon EDM than that of the SM prediction, these EDMs are still predicted to be at least
3-4 orders of magnitude smaller than the current limits (in fact, the electron EDM imposes
quite stringent constraints on new physics models). Therefore, in the following discussion,
we ignore the effect of an EDM.

5.2.2 Limits on New Physics

SUSY Particle Masses

As discussed in Section 1.5, ∆aµ plays a significant role in placing limits on supersymmetric
particle masses. We see from Eq. 1.38,

∆aµ ' 13.0 × 10−10
(

100 GeV

M

)2

tanβ =

{

27.0 × 10−10 (e+e−−based)
12.3 × 10−10 (τ−based)

(5.9)

that M ' O(100
√

tanβ GeV). In fact, one may argue that if the supersymmetric particle
mass spectrum is determined, ∆aµ places the strongest constraint on tanβ.

A more generic approach may be made by using other physics constraints. Since the
lightest supersymmetric particle is a likely candidate for non-baryonic cold dark mat-
ter, astrophysical constraints, such as those imposed by the latest Wilkinson Microwave
Anisotropy Probe (WMAP) data [109], may be used to place limits on the masses of the
two lightest supersymmetric particles, m0 and m 1

2

. Fig. 5.2 shows a plot of the allowed

regions of the (m0,m 1

2

) plane for the constrained minimal supersymmetric standard model

[110].
Fig. 5.2 assumes tanβ = 10 and µ > 0 (where µ is a supersymmetric parameter similar

to the Higgs boson mass in the Standard Model). Lines are drawn for the lower limits
of the Higgs mass (mh ' 114GeV) and chargino mass (mχ± ' 104 GeV), set by direct
searches at the Large Electron Positron (LEP) collider [110]. The darkly shaded regions are
excluded by either direct searches for neutral dark matter (the region of low m0 and high
m 1

2

) or by limits set by b→ sγ [110] (the region of low m0 and m 1

2

). The preferred regions

of the (m0,m 1

2

) plane are the shaded regions labeled “g-2” (from ∆aµ(e+e−-based)) and

WMAP (the dark WMAP region is from the latest data, whereas the lighter region is from
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Figure 5.2: Allowed regions for masses of the two lightest supersymmetric partner particles.
The calculation assumes a Higgs mass (mh) of 114 GeV, a chargino mass (mχ) of 104 GeV,
tanβ = v1/v2 = 10, µ > 0. The masses used here are from limits set by direct searches at
the LEP collider. Darkly shaded regions are excluded, whereas the shaded regions marked
as WMAP and g-2 (e+e−-based) constraints are preferred. Plot courtesy of K. Olive [111].

old data). The clearly demonstrates that, once the Higgs mass is determined, the combined
constraints from ∆aµ and WMAP will determine the value of tanβ.

Muon Substructure

Although the muon is thought to be a point particle, this is only true at the level of
experimental precision (∼ 10−16 cm) If at the scale Λµ � mµ the muon is a composite
fermion, a model-independent limit of the energy scale of the substructure may be estimated
from its contribution to aµ[112]:

aµ(Λµ) '
(

mµ

Λµ

)2

(5.10)

Assuming the entire difference ∆aµ may be ascribed to muon substructure, we find

1.5 TeV < Λµ < 4.0 TeV (e+e−−based, 95% CL)
1.9 TeV < Λµ <∞ (τ−based, 95% CL)

(5.11)
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Extra Dimensions

The mathematical groundwork for extending the laws of physics to more than our usual four
dimensions was set in the early part of the last century by Nordström, Kaluza and Kline.
Recently the idea that the four dimensions we “live” in are confined to a “brane” (subspace)
in a larger space of 4+n dimensions has become quite popular. For example, gravity could
exist in n-compact dimensions, and if the fundamental scale for the gravitational interactions
occurs at the TeV scale, then large compact extra dimensions could exist which would solve
the hierarchy problem[113].

Although the precision electroweak measurements already place stringent constraints
on the scale of such new physics, aµ provides complementary constraints independent of
the number of extra dimensions[114]. For example, Graesser [114] finds that in general the
one-loop compact extra-dimensional contribution to the muon anomalous magnetic moment
goes as

aED
µ (1) ∼ (mµ/ΛED)2 (5.12)

“ED” stands for extra dimensions and ΛED is the scale at which the extra-dimensions
become compactified. Therefore, although ΛED depends on the particular model of com-
pactification, we see that with the latest value of ∆aµ, ΛED ∼ O(1) TeV. This is similar to
the limits set by the LEP collider data.

5.3 Future Prospects

Although the current discrepancy between the e+e−- and τ -based calculations of aµ makes
interpretation of the experimental value difficult at best, progress is being made that should
help to resolve this issue. In particular, the recent measurements of σ(e+e− → hadrons)
by KLOE using radiative return have confirmed the CMD-2 results [115]. This strengthens
the case for the e+e−-based calculations. Another radiative return analysis is being done
by the BaBar Collaboration that should result in a smaller systematic uncertainty than the
KLOE result. Finally, more studies on the effect of the mass and width differences between
ρ+ and ρ0 on the τ -based result are in progress.

Assuming the issues are resolved and systematic and statistical uncertainties of the
first order hadronic vacuum polarization contribution are brought to a negligible level,
the hadronic light-by-light remains a concern if the uncertainty in the calculation is to be
reduced. Since no data-driven approach similar to that used for aHad

µ (1) exists, this contri-
bution poses the biggest challenge in the theoretical evaluation of aµ. However, historically
there has been progress in the calculation of aSM

µ as progress is made on aexp
µ , and there is

no reason to believe this trend would not continue if the uncertainty of aexp
µ were further

reduced.
In this context, we remind the reader that this is the final result of experiment E821 at

BNL. Because of the muon g-2’s unique capacity for placing stringent limits on new physics,
in particular SUSY models, we feel that further improvement on the measurement of aµ is
not only interesting but necessary. A factor of two improvement in the uncertainty of aexp

µ

is possible with minor changes to the experimental setup at BNL[116]. A proposal has also
been submitted to J-PARC for another muon g-2 experiment with a factor 10 improvement
on the current experimental uncertainties[117]. Although much work is required to make
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such endeavors possible, it would be well worth the effort. Lepton magnetic moments have
played a crucial role in the development of our understanding of nature for the last fifty
years, and hopefully they will continue to do so for another fifty!



Appendix A

G2OFF Ntuple Structure

G2OFF Ntuple ID=10, General Data Block

Var numb Type Packing Range Block Name

1 U*4 12 [0,4095] GENERAL EVNUM
2 U*4 5 [1,16] GENERAL FILL
3 U*4 15 [0,20000] GENERAL RUNNUM
4 U*4 16 [0,60000] GENERAL IVERSION
5 I*4 13 [-2,4093] GENERAL IQUAD
6 R*4 16 [0.,6553.5] GENERAL IONC
7 R*4 24 [0.,1677721. GENERAL TLASER
8 U*4 1 [0,1] GENERAL IOVER
9 R*4 16 [0.,6553.5] GENERAL SECC
10 U*4 5 [0,30] GENERAL DET
11 R*4 16 [0.,6553.5] GENERAL TZERO
12 R*4 GENERAL TOffset
13 R*4 GENERAL RNUMB(10)
14 U*4 GENERAL HClOff
15 U*4 GENERAL HCLCK
16 R*4 16 [-103.5,6450 GENERAL QEarly(4)
17 R*4 16 [-103.5,6450 GENERAL QMid(4)
18 R*4 16 [-103.5,6450 GENERAL QLate(4)
19 R*4 GENERAL WFDStreak(2)
20 R*4 GENERAL WFDLT(2)
21 R*4 GENERAL FDTime
22 I*4 GENERAL MON90C
23 U*4 GENERAL MTDCFILL
24 U*4 GENERAL T0STAT

Table A.1: GENERAL data block of the G2OFF decay electron ntuple data structure. This data
block contains information regarding the run, detector, WFD quadrupole readout, common
clock time between ωp and ωa DAQs, and other general data, for each AGS fill.
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G2OFF Ntuple ID=10, WFD/Calo Pulse Data Blocks

Var numb Type Packing Range Block Name

1 I*4 [0,500] PULSES NPULSE
2 R*4 PULSES Tstart(NPULSE)
3 U*4 PULSES Qual(NPULSE)
4 R*4 16 [-100.,555.3 PULSES FITPED(NPULSE)
5 R*4 16 [-50.,605.35 PULSES FITMAX(NPULSE)
6 R*4 PULSES FITTIME(NPULSE)
7 R*4 PULSES FITCHI2(NPULSE)
1 I*4 [0,500] PULSESL NPULSE1
2 U*4 16 PULSESL NSAM(NPULSE1)
3 U*4 8 [0,255] PULSESL DISC(NPULSE1)
4 U*4 1 [0,1] PULSESL Phase(NPULSE1)
5 U*4 9 [0,511] PULSESL MaxV(NPULSE1)
6 U*4 14 [0,10000] PULSESL IMAXV(NPULSE1)
7 U*4 8 [0,255] PULSESL Ped(NPULSE1)
8 U*4 9 [0,500] PULSESL IFSDPUL(NPULSE1)
9 U*4 3 [0,6] PULSESL NFSDHIT(NPULSE1)
10 U*4 9 [0,500] PULSESL ISDATA(NPULSE1)
11 U*4 8 [0,255] PULSESL ISAM(8,NPULSE1)
1 I*4 [0,500] SLIMDATA NSDATA
2 R*4 SLIMDATA TimeS(NSDATA)
3 R*4 16 [-100.,555.3 SLIMDATA MaxS(NSDATA)
4 R*4 16 [-100.,555.3 SLIMDATA PedS(NSDATA)
5 R*4 SLIMDATA Chi2S(NSDATA)

Table A.2: PULSES, PULSESL and SLIMDATA data blocks of the G2OFF decay electron ntuple
data structure. These data blocks contain information regarding pulses extracted from the
WFD calorimeter readout.
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G2OFF Ntuple ID=10, T0, Laser & Calo MTDC Data Blocks

Var numb Type Packing Range Block Name

1 U*4 16 T0PULSE T0NSAM
2 R*4 T0PULSE T0start
3 R*4 T0PULSE T0mean
4 U*4 10 PSD2 YPAT(NPSD2)
5 U*4 [0,512] T0PULSE T0MaxV
5 R*4 16 [0.,65535.] T0PULSE T0Area
6 U*4 8 [0,255] T0PULSE T0Ped
7 R*4 16 [0.,655.35] T0PULSE T0Width
1 U*4 16 LPULSE LNSAM
2 U*4 10 [0,512] LPULSE LMaxV
3 R*4 LPULSE Lstart
4 R*4 LPULSE LOffset
5 U*4 8 [0,255] LPULSE LPed
6 U*4 LPULSE LQual
7 R*4 16 [-100.,555.3 LPULSE LFPED
8 R*4 16 [-100.,555.3 LPULSE LFMAX
9 R*4 LPULSE LFTIME
10 R*4 LPULSE LFCHI2
1 I*4 [0,500] CALMTDC NMTDCST
2 R*4 CALMTDC TDMTDC(NMTDCST)
3 U*4 13 [0,8000] CALMTDC MTPULSE(NMTDCST)

Table A.3: T0PULSE, LPULSE and CALMTDC data blocks of the G2OFF decay electron ntuple
data structure. These data blocks contain information regarding the T0 and laser pulses,
as well as the calorimeter MTDC timing readouts.
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G2OFF Ntuple ID=10, Kicker, FSD & PSD Data Blocks

Var numb Type Packing Range Block Name

1 R*4 KICKER FAKPhase(3)
2 R*4 KICKER FAKAmp(3)
3 R*4 KICKER FAKFreq(3)
4 R*4 KICKER FAKDecay(3)
5 R*4 KICKER FAKChiSq(3)
1 I*4 [0,600] PSD2 NPSD2
2 R*4 PSD2 TPSD2(NPSD2)
3 U*4 PSD2 XPAT(NPSD2)
4 U*4 PSD2 YPAT(NPSD2)
5 U*4 13 [0,8000] PSD2 PPULSE(NPSD2)
1 I*4 [0,600] PSDT NPSDT
2 R*4 PSDT TPSDT(NPSDT)
1 I*4 [0,1000] FSDPULSE NFSDPUL
2 U*4 3 [0,5] FSDPULSE FSDFing(NFSDPUL)
3 R*4 16 [-30.,35.535 FSDPULSE FSDFingT(NFSDPUL)
1 I*4 [0,1200] PSD2PC NPSD2PC
2 R*4 PSD2PC TPSD2PC(NPSD2PC)
1 I*4 [0,1200] PSDA NPSDA
2 R*4 PSDA TPSDA(NPSDA)

Table A.4: KICKER, PSD2, PSDT, FSDPULSE, PSD2PC and PSDA data blocks of the G2OFF decay
electron ntuple data structure. These data blocks contain information regarding the kicker
WFD, PSD and FSD MTDC readouts.
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The Ratio Method - Derivations

B.1 Simple 3-Parameter Function

This is derived from the simple 5-parameter function for N(t),

N5(t) = N0e
−t/τ (1 +A cos(ωat)) (B.1)

where we have set the g-2 phase, φa, equal to zero for simplicity (it will of course be added
in later).

Let
u+(t) = N5(t+ T/2) = N0e

−t/τe−T/2τ (1 −A cos(ωat+ δ)) (B.2)

and
u−(t) = N5(t− T/2) = N0e

−t/τeT/2τ (1 −A cos(ωat− δ)) (B.3)

where T is a good approximation of the g-2 period (to about 5-10 ppm) and δ is the
difference between T and Tatrue

, δ = ωa

2 (T − Tatrue
) = π × δT .

Now let
v1(t) = v2(t) = N5(t) (B.4)

U(t) = u+(t) + u−(t) (B.5)

V (t) = v1(t) + v2(t) (B.6)

r(t) =
V (t) − U(t)

V (t) + U(t)
(B.7)

Expanding e±T/2τ and A cos(ωat± δ), we find

u+(t) = N0e
−t/τ

(

1 − 1

2

T

τ
+

1

2

(

1

2

T

τ

)2

− . . .

)

×

(1 −A cos(ωat) +Aδ sin(ωat)) (B.8)
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u−(t) = N0e
−t/τ

(

1 +
1

2

T

τ
+

1

2

(

1

2

T

τ

)2

+ . . .

)

×

(1 −A cos(ωat) −Aδ sin(ωat)) (B.9)

and so,

U(t) = 2N0e
−t/τ

(

1 +
1

2

(

1

2

T

τ

)2
)

(1 −A cos(ωat)) −

N0e
−t/τ T

τ
Aδ sin(ωat) (B.10)

Now let

C1 =
1

16

(

T

τ

)2

' 2.87 × 10−4, (B.11)

and

C2 =
TAδ

4τ
' 2 × 10−7 (B.12)

then,

V (t) − U(t) = 4N0e
−t/τ (A cos(ωat) + C2 sin(ωat)) −

4N0e
−t/τC1(1 −A cos(ωat)) (B.13)

V (t) + U(t) = 4N0e
−t/τ (1 − C2 sin(ωat)) +

4N0e
−t/τC1(1 −A cos(ωat)) (B.14)

r(t) =
A cos(ωat) + C2 sin(ωat)) − C1(1 −A cos(ωat))

(1 − C2 sin(ωat)) + C1(1 −A cos(ωat))

=
A′ cos(ωat) − C1 + C2 sin(ωat)

1 − C2 sin(ωat) + C1(1 −A cos(ωat))
(B.15)

where A′ = A(1 + C1)

Since the terms in the denominator are small, we can rewrite this as

r(t) =
(

A′ cos(ωat) − C1 + C2 sin(ωat)
)

×
(1 − C1(1 −A cos(ωat)) + C2 sin(ωat)) (B.16)
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Keeping terms to first order, we have

r(t) = A′ cos(ωat) − C1 + C2 sin(ωat) − C1A
′ cos(ωat) +

C1AA
′ cos2(ωat) + C2A

′ sin(ωat) cos(ωat)

= A′′ cos(ωat) − C1 + C2 sin(ωat) +

C2A
′ cos(ωat) sin(ωat) + C1AA

′ cos2(ωat) (B.17)

where

A′′ = A′(1 − C1) = A(1 − C2
1 ) (B.18)

Terms involving C2 are of order 10−7 or less, and so may be neglected, and we are left
with

r(t) = A′′ cos(ωat) − C1 + C1AA
′ cos2(ωat) (B.19)

In practice, the last term is omitted, so that

r(t) = A cos(ωat) − C1 (B.20)

B.2 Derivation of the Ratio Function with a Background

Term

Here we assume a background term B(t) such that

N(t) = N5(t) +B(t) (B.21)

where B(t)/N5(t) � 1. Eq. B.15 from the previous derivation is then modified to be

r(t) =
A cos(ωat) + C2 sin(ωat)) − C1(1 −A cos(ωat)) + bnum(t)

(1 − C2 sin(ωat)) + C1(1 −A cos(ωat)) + bden(t)

=
A′ cos(ωat) − C1 + C2 sin(ωat) + bnum(t)

1 − C2 sin(ωat) + C1(1 −A cos(ωat)) + bden(t)
(B.22)

where

bnum(t) =
2B(t) −B(t+ T/2) −B(t− T/2)

4N0 exp(−t/τ) (B.23)

and

bden(t) =
2B(t) +B(t+ T/2) +B(t− T/2)

4N0 exp(−t/τ) (B.24)
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Therefore, the ratio becomes, neglecting the same terms as before but keeping the back-
ground terms to first order,

r(t) = A cos(ωat)(1 − bden(t)) − C1 + bnum(t) (B.25)

From this result one immediately sees that if the background term is large enough, the
fit result for ωa will be fit-start-time dependent. We also see that any background that
oscillates, such as pileup and CBO, will produce “beat frequencies” in the ratio time spec-
trum. Pileup will produce beat frequencies of fbeat = 0 and f = 2fa, whereas CBO will
produce beat frequencies of fbeat = fCBO ± fa. If a beat frequency sits close to the actual
g-2 frequency fa, then fits to the data that do not have background subtracted or fits to
the data with a simple three-parameter function will show oscillations in the fit value of
ωa at frequencies f = fbeat ± fa. This is readily seen when the 2001 data set is fit to the
three-parameter ratio function: ωa oscillates vs. fit start time at frequencies f ' 40 kHz
and f ' 32 kHz for the low- and high-n data sets respectively.

Another, perhaps more subtle, expectation is g-2 oscillations in difference plots of ω vs.
fit start time with a non-oscillating background “removed” (either subtracted or fitted out)
and the background left in. A good example of this is gain or ESC corrections; since gain
or ESC effects N0, τ and in particular A versus time, one finds that bden(t) ∝ cos(ωat).
Therefore, in the fit-start-time scan of ωa with the background left in, ωa will have small
oscillations at f = 2fa (since cos(ωa)

2 = 1
2(1 + cos(2ωa))) and the fit-start-time scan of ωa

with the background term removed will either have no oscillations at this frequency or at
least oscillations of a much smaller amplitude. When looking at (R(corr.) vs. t) − (R(no
corr.) vs. t), one expects to see oscillations at twice the g-2 frequency. This is indeed the
case, as shown in Fig. 4.49.

B.3 A General Derivation of the Ratio Function with CBO

From past experience, we know that Eq. B.1 is not sufficient to obtain stable fit results from
the data. This is because the counting rate is changed by other effects, primarily those from
detector gains, muon losses, and coherent betatron oscillations (CBO). The ratio method
is largely insensitive to detector gains and muon losses, however it is not blind to CBO.

The number, asymmetry and phase are affected by CBO, and therefore the number of
decay electrons or positrons as a function of time is rewritten as:

N(t) = (N0 +NCBO(t))e−t/τ [1 + (A+ACBO(t)) cos(ωat+ φ+ φCBO(t))] (B.26)

Assuming that the effect of CBO is small, we expand Eq. B.26 out and keep terms to only
first order:

N(t) = (N0 +NCBO(t))e−t/τ [1 +A cos(ωat+ φ) +ACBO(t) cos(ωat+ φ) −
AφCBO(t) sin(ωat+ φ)]
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= N0e
−t/τ (1 +A cos(ωat+ φ))

(

1 +
NCBO(t)

N0

)

+

N0e
−t/τ

(

1 +
NCBO(t)

N0

)

(ACBO(t) cos(ωat+ φ)) −

AφCBO(t) sin(ωat+ φ))

= N5(t) (1 + f1(t) + f2(t))

= N5(t) (1 + fCBO(t)) (B.27)

where

f1(t) =
NCBO(t)

N0
, (B.28)

f2(t) =
ACBO(t) cos(ωat+ φ)) −AφCBO(t) sin(ωat+ φ)

1 +A cos(ωat+ φ)
, (B.29)

and

fCBO(t) = f1(t) + f2(t) (B.30)

Eq. B.27 is equivalent to having a background term,

N(t) = N5(t) +B(t) (B.31)

where
B(t) = N5(t) · fCBO(t) (B.32)

In the previous section it was shown that with a background term B(t), Eq. B.20 becomes:

r(t) = [1 − bden(t)]A cos(ωat+ φ) − C1 + bnum(t) (B.33)

where
bden(t) = 2b(t) + b+(t) + b−(t), (B.34)

bnum(t) = 2b(t) − b+(t) − b−(t), (B.35)

b(t) =
B(t)

4N0 exp(−t/τ) , (B.36)

b+(t) = b(t+ T/2), (B.37)

and
b−(t) = b(t− T/2), (B.38)

Now,

b+(t) + b−(t) =
1

4

(

1 − T

2τ
+

1

2

(

T

2τ

)2
)

(1 −A cos(ωat)) ×

fCBO(t+ T/2) +
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1

4

(

1 +
T

2τ
+

1

2

(

T

2τ

)2
)

(1 −A cos(ωat)) ×

fCBO(t− T/2) (B.39)

where we have left out all terms with Aδ sin() since they are small compared to the A cos()
terms, and the phase, φ is implied in all cosine terms. Since fCBO(t) is small, we keep only
the highest order terms:

b+(t) + b−(t) =
1

4
(1 −A cos(ωat)) (fCBO(t+ T/2) + fCBO(t− T/2)) (B.40)

Similarly,

2b(t) =
1

2
(1 +A cos(ωat)) fCBO(t) (B.41)

Using Eqs. B.28 and B.29, we find that

b+(t) + b−(t) =
1

4
(1 −A cos(ωat))

(

NCBO(t+ T/2) +NCBO(t− T/2)

N0

)

−
1

4
(ACBO(t+ T/2) +ACBO(t− T/2)) · cos(ωat) +

1

4
(AφCBO(t+ T/2) +AφCBO(t− T/2)) · sin(ωat) (B.42)

and again similarly,

2b(t) =
1

2

(

(1 +A cos(ωat))
NCBO(t)

N0
+ACBO(t) cos(ωat) −AφCBO(t) sin(ωat)

)

(B.43)

Next, we look at bden and bnum:

bden = 2b(t) + b+ + b−

=
1

4

(

2NCBO +Ncbo+ +Ncbo−

N0

)

+

1

4

(

A cos(ωat)
2NCBO −Ncbo+ −Ncbo−

N0

)

+

1

4
((2ACBO −Acbo+ −Acbo−) cos(ωat)) −

1

4
((2AφCBO −Aφcbo+ −Aφcbo−) sin(ωat)) (B.44)

and

bnum = 2b(t) − b+ − b−

=
1

4

(

2NCBO −Ncbo+ −Ncbo−

N0

)

+

1

4

(

A cos(ωat)
2NCBO +Ncbo+ +Ncbo−

N0

)

+



173

1

4
((2ACBO +Acbo+ +Acbo−) cos(ωat)) −

1

4
((2AφCBO +Aφcbo+ +Aφcbo−) sin(ωat)) (B.45)

The above equations look a bit scary, but we can simplify them quite a bit. If one
assumes NCBO ∼ ACBO ∼ φCBO ∼ exp(−t/τCBO) cos(ωCBOt) and that τCBO is much greater
than T/2, then since

cos(ωCBO(t± T/2)) = cos(ωCBOt) cos(ωCBOT/2) ∓ sin(ωCBOt) sin(ωCBOT/2) (B.46)

we find that Ncbo+ +Ncbo− ' 2NCBO cos(ωCBOT/2), Acbo+ +Acbo− ' 2ACBO cos(ωCBOT/2)
and φcbo+ +φcbo− ' 2φCBO cos(ωCBOT/2). Therefore we can rewrite Eqs. B.44 and B.45 as

bden =
1

2
(
NCBO

N0
(1 + ξ) +A cos(ωat)

NCBO

N0
(1 − ξ) +

ACBO(1 − ξ) cos(ωat) − φ′CBO(1 − ξ) sin(ωat)) (B.47)

and

bnum =
1

2
(
NCBO

N0
(1 − ξ) +A cos(ωat)

NCBO

N0
(1 + ξ) +

ACBO(1 + ξ) cos(ωat) − φ′CBO(1 + ξ) sin(ωat)) (B.48)

where ξ = cos(ωCBOT/2) and φ′CBO = AφCBO.

Several aspects of these results should be noted. First, when we took data with quadrupole
focusing such that TCBO ' 1

2Ta (ie: 1999 and 2000 runs), then many terms in bden and bnum

cancel since ξ ' 1. We end up with

bden ' NCBO

N0
(B.49)

and

bnum '
(

A cos(ωat)
NCBO

N0

)

+

A′
CBO cos(ωat) − φ′CBO sin(ωat) (B.50)

Looking at Eq. B.33 we see that all CBO terms involve products of cos(ωCBOt) with either
cos(ωat) or sin(ωat), which reduce to some linear combination of cos((ωCBO − ωa)t) and
cos((ωCBO + ωa)t). Note that there are no terms involving simply cos(ωCBOt)! This is a
rather unique result, and obviously does not apply to the 2001 data.

Next, the amplitude of the main cbo peak can in principle be either minimally zero or
maximally the same size as would be seen in a multi-parameter fit of the normal “wiggle”
plot, which is the special case of the 2000 run conditions. Otherwise, the cbo amplitude
should be suppressed by some factor in the ratio method. For the 2001 data, where fCBO '
419 and 490 kHz, then ξ ' -0.15 and 0.10 respectively and the suppression factor is ∼ 2.
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B.4 Error Propagation

In a counting measurement, the uncertainty in the number of counts within a time bin is
simply the square root of the number of counts in that time bin, or, more precisely the
square root of the function averaged over that time bin. Therefore, if one were to fit the
data directly to a function N(t), in a log-likelihood or χ2 fit, the error on each bin is

√
N

or
√

N(t). However, when fitting the data to a function f(N(t)), the uncertainty of that
function must be determined.

The ratio is defined as

r(t) =
V (t) − U(t)

V (t) + U(t)
(B.51)

where
V (t) = v1(t) + v2(t) = N1(t) +N2(t) (B.52)

and
U(t) = u+(t) + u−(t) = N(t+ T/2) +N(t− T/2) (B.53)

It is important to note that N1(t), N2(T ), N(t + T/2), N(t − T/2) are all statistically
independent data sets. The uncertainty of the ratio at time t is therefore

σr(t)
2 =

(

∂r(t)

∂V (t)

)2

δV (t)2 +

(

∂r(t)

∂U(t)

)2

δU(t)2 (B.54)

Now,
∂r(t)

∂V
=

1

U + V
−
(

V − U

(U + V )2

)

, (B.55)

∂r(t)

∂U
=

−1

U + V
−
(

V − U

(U + V )2

)

, (B.56)

δV 2 = δv2
1 + δv2

2 = v1 + v2 = V (B.57)

and
δU2 = δu2

+ + δu2
− = u+ + u− = U (B.58)

where both V and U are at time t. Therefore we find

σ2
r =

4UV

(V + U)3
=

1 − r2

V + U
(B.59)

The above is the correct derivation of the error propagation when no backgrounds are
subtracted from the data. However, in this analysis, pileup events are statistically con-
structed from the data and then subtracted from the data set; therefore one must properly
calculate the correct error bar due to subtracting a subset of correlated data from a set of
data. This is determined in [118] for a multi-parameter fit: the error at a given time t is
increased by

σ2
N → σ2

N (1 + γe(t−t0)/τ ) (B.60)

where γ is the product of the fraction of pileup events at t0 and a “correlation” factor as
described in [118], and τ is the pileup lifetime (32.2 µs). γ was determined for each detector
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Figure B.1: The “fast factor” as a function of time after injection. This enhances the effect
of pileup at early times, albeit by a small amount.

in this data set at t0 = 32 µs; the typical value of γ is ∼ 1.04%.

However, one must first determine the proper functional form of the “correct” error of
the ratio due to pileup subtraction. We begin with the modification of the errors on V and
U .

δV 2 = δv2
1(1 + γ(t)) + δv2

2(1 + γ(t))

= (v1 + v2)(1 + γ(t)) = V (1 + γ(t)) (B.61)

where γ(t) = γe(t−t0)/τ , and

δU2 = δu2
+(1 + γ(t+)) + δu2

−(1 + γ(t−))

= u+(1 + γ(t)e−T/2τ ) + u−(1 + γ(t)eT/2τ )

' (u+ + u−)

(

1 + γ(t)

(

1 +
1

2

(

T

2τ

)2
))

= U

(

1 + γ(t)

(

1 +
1

2

(

T

2τ

)2
))

(B.62)

However, since γ(t) is already very small at 32 µs, we neglect the extra 1
2

(

T
2τ

)2
term and

find that the change in the error due to pileup subtraction is, to a very good approximation,
the same for ratio fits as for multi-parameter wiggle fits: σ2

r → σ2
r (1 + γe−(t−t0)/τ ).

One further correction must be made, and that is to the value of γ itself. At early times
after injection, the bunched structure of the beam causes an enhancement of the pileup by
the so-called fast-factor:

ff(t) =
〈N2〉(t)
〈N〉2(t) (B.63)

where t denotes the center of a bin of a given bin width dt. The fast factor was found
by extracting N(t) spectra using bin widths of dt = 5 ns, and taking the ratio of N(t)2
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re-binned with dt = 150 ns to the square of N(t) re-binned with dt = 150 ns. In the 2000
data, the fast factor was found to be as large as 1.6 around 20 µs after injection, however,
as shown in Fig. B.1, in the 2001 data the fast factor is only ∼ 1.03 at 20 µs. The difference
is due to a sharp reduction in data rate between the 2000 and 2001 runs.

We therefore find that the error on the ratio at time t is given as σr → σr(1 +
ff(t)γe−(t−t0)/τ ). Using this improved estimation of the error bars of the ratio results
in an improvement in the χ2/d.o.f. of the 9-parameter fit by about 3 × 10−3, changes the
fitted R value by less than 0.06 ppm, and changes the statistical uncertainty on R by less
than 0.005 ppm.
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